RESUMO
α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.
Assuntos
Proteínas Quinases Ativadas por AMP , Hiperlipidemias , Ácidos Cetoglutáricos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Animais , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/complicações , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/patologia , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologiaRESUMO
Significance: Metabolic syndrome (MetS) has become a major global public health problem and there is an urgent need to elucidate its pathogenesis and find more effective targets and modalities for intervention. Recent Advances: Oxidative stress and inflammation are two of the major causes of MetS-related symptoms such as insulin resistance and obesity. Nuclear factor erythroid 2 related factor 2 (Nrf2) is one of the important systems responding to oxidative stress and inflammation. As cells undergo stress, cysteines within Kelch-like ECH-associated protein 1 (Keap1) are oxidized or electrophilically modified, allowing Nrf2 to escape ubiquitination and be translocated from the cytoplasm to the nucleus, facilitating the initiation of the antioxidant transcriptional program. Meanwhile, a growing body of evidence points out a specific modulation of mitochondrial homeostasis by Nrf2. After nuclear translocation, Nrf2 activates downstream genes involved in various aspects of mitochondrial homeostasis, including mitochondrial biogenesis and dynamics, mitophagy, aerobic respiration, and energy metabolism. In turn, mitochondria reciprocally activate Nrf2 by releasing reactive oxygen species and regulating antioxidant enzymes. Critical Issues: In this review, we first summarize the interactions between Nrf2 and mitochondria in the modulation of oxidative stress and inflammation to ameliorate MetS, then propose that Nrf2 and mitochondria form a mutually regulating circuit critical to maintaining homeostasis during MetS. Future Directions: Targeting the Nrf2-mitochondrial circuit may be a promising strategy to ameliorate MetS, such as obesity, diabetes, and cardiovascular diseases.
Assuntos
Síndrome Metabólica , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Síndrome Metabólica/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mitochondrial epigenetics is rising as intriguing notion for its potential involvement in aging and diseases, while the details remain largely unexplored. Here it is shown that among the 13 mitochondrial DNA (mtDNA) encoded genes, NADH-dehydrogenase 6 (ND6) transcript is primarily decreased in obese and type 2 diabetes populations, which negatively correlates with its distinctive hypermethylation. Hepatic mtDNA sequencing in mice unveils that ND6 presents the highest methylation level, which dramatically increases under diabetic condition due to enhanced mitochondrial translocation of DNA methyltransferase 1 (DNMT1) promoted by free fatty acid through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Hepatic knockdown of ND6 or overexpression of Dnmt1 similarly impairs mitochondrial function and induces systemic insulin resistance both in vivo and in vitro. Genetic or chemical targeting hepatic DNMT1 shows significant benefits against insulin resistance associated metabolic disorders. These findings highlight the pivotal role of ND6 epigenetic network in regulating mitochondrial function and onset of insulin resistance, shedding light on potential preventive and therapeutic strategies of insulin resistance and related metabolic disorders from a perspective of mitochondrial epigenetics.
Assuntos
Metilação de DNA/genética , DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , NADH Desidrogenase/genética , Idoso , Animais , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-IdadeRESUMO
Hyperlipidemia is associated with metabolic disorders, but the detailed mechanisms and related interventions remain largely unclear. As a functional food in Asian diets, Herba houttuyniae has been reported to have beneficial effects on health. The present research was to investigate the protective effects of Herba houttuyniae aqueous extract (HAE) on hyperlipidemia-induced liver and heart impairments and its potential mechanisms. Male C57BL/6J mice were administered with 200 or 400 mg/kg/day HAE for 9 days, followed by intraperitoneal injection with 0.5 g/kg poloxamer 407 to induce acute hyperlipidemia. HAE treatment significantly attenuated excessive serum lipids and tissue damage markers, prevented hepatic lipid deposition, improved cardiac remodeling, and ameliorated hepatic and cardiac oxidative stress induced by hyperlipidemia. More importantly, NF-E2 related factor (Nrf2)-mediated antioxidant and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis pathways as well as mitochondrial complex activities were downregulated in the hyperlipidemic mouse livers and hearts, which may be attributable to the loss of adenosine monophosphate (AMP)-activated protein kinase (AMPK) activity: all of these changes were reversed by HAE supplementation. Our findings link the AMPK/PGC-1α/Nrf2 cascade to hyperlipidemia-induced liver and heart impairments and demonstrate the protective effect of HAE as an AMPK activator in the prevention of hyperlipidemia-related diseases.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Hiperlipidemias/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/induzido quimicamente , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Extratos Vegetais/químicaRESUMO
Accumulating evidence has elucidated that hyperlipidemia is closely associated with an increasing prevalence of CVDs (cardiovascular diseases) because of endothelial dysfunction. In the present study, we investigated the effect and mechanism of PU (Punicalagin), a major ellagitannin in pomegranate, on endothelial dysfunction both in vivo and in vitro. In vivo, PU significantly ameliorated hyperlipidemia-induced accumulation of serum triglyceride and cholesterol as well as endothelial and mitochondrial dysfunction of thoracic aorta. Intriguingly, the FoxO1 (forkhead box O1) pathway was activated, which may account for prevention of vascular dysfunction and mitochondrial loss via upregulating mitochondrial biogenesis. In line, through in vitro cell cultures, our study demonstrated that PU not only increased the total FoxO1 protein, but also enhanced its nuclear translocation. In addition, silencing of FoxO1 remarkably abolished the ability of PU to augment the mitochondrial biogenesis, eNOS (endothelial NO synthase) expression, and oxidative stress, implying the irreplaceable role of FoxO1 in regulating endothelial function in the presence of PU. Conversely, suppression of excessive ROS (reactive oxygen species) secured the PA (palmitate)-induced decrease of FoxO1 expression, implying that there was a cross-talk between FoxO1 pathway and ROS. Concomitantly, the inflammatory response in current study was primarily mediated via p38 MAPK/NF-κB signaling pathway besides of FoxO1 pathway. Taken together, our findings suggest that PU ameliorates endothelial dysfunction by activating FoxO1 pathway, a pivotal regulating switch of mitochondrial biogenesis.