Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Lett ; 587: 216705, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38373691

RESUMO

Malignant tumors have increased energy requirements due to growth, differentiation or response to stress. A significant number of studies in recent years have described upregulation of mitochondrial genes responsible for oxidative phosphorylation (OXPHOS) in some tumors. Although OXPHOS is replaced by glycolysis in some tumors (Warburg effect), both processes can occur simultaneously during the evolution of the same malignancies. In particular, chemoresistant and/or cancer stem cells appear to find a way to activate OXPHOS and metastasize. In this paper, we discuss recent work showing upregulation of OXPHOS in chemoresistant tumors and cell models. In addition, we show an inverse correlation of OXPHOS gene expression with the survival time of cancer patients after chemotherapy and discuss combination therapies for resistant tumors.


Assuntos
Neoplasias , Fosforilação Oxidativa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Glicólise
2.
Biochem Pharmacol ; 198: 114966, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181313

RESUMO

Traditional cancer treatments based on chemo- and/or radiotherapy effectively kill only differentiated cancer cells, while metastasis and recurrences are caused by surviving cancer resistant cells (CRC) or a special subpopulation of cancer cells known as cancer stem cells (CSC). Both of these cell types compromise anticancer treatment through various mechanisms, including withdrawal of the anticancer drug through ATP-binding cassette transporters, increased expression of DNA repair genes, or transition to a quiescent phenotype. In contrast to many cancers, where energy consumption is due to glycolysis (Warburg effect), the bioenergetics of CSC and CRC is most often related to oxidative phosphorylation, that is, dependent on mitochondrial function. Therefore, compounds that induce mitochondrial dysfunction (MDF), such as some antibiotics, may represent an alternative approach to anticancer therapy. This review summarizes the major recent works on the use of antibiotics to target tumors via CSC and suggests next steps for developing this approach.


Assuntos
Antibacterianos , Neoplasias , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Fosforilação Oxidativa
3.
ChemMedChem ; 17(4): e202100642, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34847299

RESUMO

Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with the worst prognosis after chemo- or radiation therapy. This is mainly due to the development of cancer chemoresistance accompanied by tumor recurrence. In this work, we investigated a new mechanism of acquired chemoresistance of TNBC cells. We showed that extracellular vehicles (EVs) of chemoresistant TNBC cells can transfer mitochondria to sensitive cancer cells, thus increasing their chemoresistance. Such transfer, but with less efficiency, can be carried out over short distances using tunneling nanotubes. In addition, we showed that exosome fractions carrying mitochondria from resistant TNBC cells contribute to acquired chemoresistance by increasing mtDNA levels with mutations in the mtND4 gene responsible for tumorigenesis. Blocking mitochondrial transport by exosome inhibitors, including GW4869, reduced acquired TNBC chemoresistance. These results could lead to the identification of new molecular targets necessary for more effective treatment of this type of cancer.


Assuntos
DNA Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
4.
Antibiotics (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922611

RESUMO

In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL. By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed a possible explanation for the specificity of the action of these analogs in the translation process. CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria, as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells with these compounds.

5.
Redox Biol ; 40: 101860, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445068

RESUMO

Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.


Assuntos
Anemia de Fanconi , Doenças Mitocondriais , Anemia de Fanconi/genética , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Mitomicina , Fenótipo , Proteínas
6.
FEBS J ; 288(7): 2184-2202, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090711

RESUMO

A growing body of evidence supports the notion that cancer resistance is driven by a small subset of cancer stem cells (CSC), responsible for tumor initiation, growth, and metastasis. Both CSC and chemoresistant cancer cells may share common qualities to activate a series of self-defense mechanisms against chemotherapeutic drugs. Here, we aimed to identify proteins in chemoresistant triple-negative breast cancer (TNBC) cells and corresponding CSC-like spheroid cells that may contribute to their resistance. We have identified several candidate proteins representing the subfamilies of DNA damage response (DDR) system, the ATP-binding cassette, and the 26S proteasome degradation machinery. We have also demonstrated that both cell types exhibit enhanced DDR when compared to corresponding parental counterparts, and identified RAD50 as one of the major contributors in the resistance phenotype. Finally, we have provided evidence that depleting or blocking RAD50 within the Mre11-Rad50-NBS1 (MRN) complex resensitizes CSC and chemoresistant TNBC cells to chemotherapeutic drugs.


Assuntos
Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Cisplatino/administração & dosagem , Ciclofosfamida/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Intervalo Livre de Doença , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética
7.
Cancer Lett ; 503: 185-196, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33316348

RESUMO

Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.


Assuntos
Anemia de Fanconi/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Proteômica/métodos , Linhagem Celular , Cromatografia Líquida , Reparo do DNA , Glicólise , Humanos , Fosforilação Oxidativa , Espectrometria de Massas em Tandem
9.
Cancer Lett ; 474: 106-117, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968219

RESUMO

The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação , Animais , Apoptose , Humanos , Neoplasias/genética , Neoplasias/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação
10.
Mol Cell Proteomics ; 18(2): 231-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30373788

RESUMO

Cancer cells are known to reprogram their metabolism to adapt to adverse conditions dictated by tumor growth and microenvironment. A subtype of cancer cells with stem-like properties, known as cancer stem cells (CSC), is thought to be responsible for tumor recurrence. In this study, we demonstrated that CSC and chemoresistant cells derived from triple negative breast cancer cells display an enrichment of up- and downregulated proteins from metabolic pathways that suggests their dependence on mitochondria for survival. Here, we selected antibiotics, in particular - linezolid, inhibiting translation of mitoribosomes and inducing mitochondrial dysfunction. We provided the first in vivo evidence demonstrating that linezolid suppressed tumor growth rate, accompanied by increased autophagy. In addition, our results revealed that bactericidal antibiotics used in combination with autophagy blocker decrease tumor growth. This study puts mitochondria in a spotlight for cancer therapy and places antibiotics as effective agents for eliminating CSC and resistant cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Linezolida/administração & dosagem , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linezolida/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/efeitos dos fármacos
11.
Biol Rev Camb Philos Soc ; 93(1): 152-165, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464404

RESUMO

In wild-type cells, autophagy represents a tumour-suppressor mechanism, and dysfunction of the autophagy machinery increases genomic instability, DNA damage, oxidative stress and stem/progenitor expansion, which are events associated with cancer onset. Autophagy occurs at a basal level in all cells depending on cell type and cellular microenvironment. However, the role of autophagy in cancer is diverse and can promote different outcomes even in a single tumour. For example, in hypoxic tumour regions, autophagy emerges as a protective mechanism and allows cancer cell survival. By contrast, in cancer cells surrounding the tumour mass, the induction of autophagy by radio- or chemotherapy promotes cell death and significantly reduces the tumour mass. Importantly, inhibition of autophagy compromises tumorigenesis by mechanisms that are not entirely understood. The aim of this review is to explain the apparently contradictory role of autophagy as a mechanism that both promotes and inhibits tumorigenesis using different models. The induction/inhibition of autophagy as a mechanism for cancer treatment is also discussed.


Assuntos
Autofagia/fisiologia , Carcinogênese , Neoplasias/terapia , Animais , Humanos
12.
Antioxid Redox Signal ; 28(11): 1066-1079, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28683561

RESUMO

Significance: A fraction of tumorigenic cells, also known as tumor initiating or cancer stem cells (CSCs), is thought to drive tumor growth, metastasis, and chemoresistance. However, little is known regarding mechanisms that convey relevant pathways contributing to their self-renewal, proliferation, and differentiation abilities. Recent Advances: Recent works on CSCs provide evidence on the role of redox disruption and regulation of autophagic flux. This has been linked to increased DNA repair capacity and chemoresistance. Critical Issues: The current review summarizes the most recent studies assessing the role of redox homeostasis, autophagy, and chemoresistance in CSCs, including some novel findings on microRNAs and their role in horizontal transfer within cancer cell populations. Future Directions: Rational anticancer therapy and prevention should rely on the fact that cancer is a redox disease with the CSCs being the apex modulated by redox-mediated autophagy. Antioxid. Redox Signal. 28, 1066-1079.

13.
Cell Death Dis ; 8(10): e3141, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072692

RESUMO

Lung cancer is one of the most aggressive tumours with very low life expectancy. Altered microRNA expression is found in human tumours because it is involved in tumour growth, progression and metastasis. In this study, we analysed microRNA expression in 47 lung cancer biopsies. Among the most downregulated microRNAs we focussed on the miR-99a characterisation. In vitro experiments showed that miR-99a expression decreases the proliferation of H1650, H1975 and H1299 lung cancer cells causing cell cycle arrest and apoptosis. We identified two novel proteins, E2F2 (E2F transcription factor 2) and EMR2 (EGF-like module-containing, mucin-like, hormone receptor-like 2), downregulated by miR-99a by its direct binding to their 3'-UTR. Moreover, miR-99a expression prevented cancer cell epithelial-to-mesenchymal transition (EMT) and repressed the tumourigenic potential of the cancer stem cell (CSC) population in both these cell lines and mice tumours originated from H1975 cells. The expression of E2F2 and EMR2 at protein level was studied in 119 lung cancer biopsies. E2F2 and EMR2 are preferentially expressed in adenocarcinomas subtypes versus other tumour types (squamous and others). Interestingly, the expression of E2F2 correlates with the presence of vimentin and both E2F2 and EMR2 correlate with the presence of ß-catenin. Moreover, miR-99a expression correlates inversely with E2F2 and directly with ß-catenin expression in lung cancer biopsies. In conclusion, miR-99a reveals two novel targets E2F2 and EMR2 that play a key role in lung tumourigenesis. By inhibiting E2F2 and EMR2, miR-99a represses in vivo the transition of epithelial cells through an EMT process concomitantly with the inhibition of stemness features and consequently decreasing the CSC population.


Assuntos
Fator de Transcrição E2F2/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Acoplados a Proteínas G/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Fator de Transcrição E2F2/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Med Res Rev ; 37(6): 1275-1298, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28682452

RESUMO

Mitochondrial dysfunction (MDF) has been identified as an important factor in various diseases ranging from neurological disorders, to diseases of the cardiovascular system and metabolic syndromes. MDF was also found in cancer as well as in cancer predisposition syndromes with defective DNA damage response (DDR) machinery. Moreover, a recent highlight arises from the detection of MDF in eukaryotic cells upon treatment with antibiotics. In this review, we focus on recent studies of MDF in pathological conditions with a particular emphasis on the effects of various classes of antibiotics on mitochondria. Special attention is given to the role of autophagy/mitophagy in MDF and repurposing antibiotics as anticancer drugs.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/metabolismo
15.
Cancer Lett ; 384: 60-69, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693455

RESUMO

A significant part of current research studies utilizes various cellular models which imply specific antibiotics-containing media as well as antibiotics used for clonal selection or promoter de/activation. With the great success of developing such tools, mitochondria, once originated from bacteria, can be effectively targeted by antibiotics. For that reason, some studies propose antibiotics-targeting of mitochondria as part of anticancer therapy. Here, we have focused on the effects of various classes of antibiotics on mitochondria in cancer and non-cancer cells and demonlow mitochondrial membrane potential, reduced ATP production, altered morphology and lowered respiration rate which altogether suggested mitochondrial dysfunction (MDF). This was in parallel with increased level of reactive oxygen species (ROS) and decreased activity of mitochondrial respiration complexes. However, both survival and repopulation capacity of cancer cells was not significantly affected by the antibiotics, perhaps due to a glycolytic shift or activated autophagy. In turn, simultaneous inhibition of autophagy and treatment with antibiotics largely reduced tumorigenic properties of cancer cells suggesting potential strategy for anticancer therapy.


Assuntos
Adenina/análogos & derivados , Antibacterianos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
16.
Oncotarget ; 7(36): 58065-58074, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27517150

RESUMO

Fanconi anemia (FA) is a rare genetic disorder associated with bone-marrow failure, genome instability and cancer predisposition. Recently, we and others have demonstrated dysfunctional mitochondria with morphological alterations in FA cells accompanied by high reactive oxygen species (ROS) levels. Mitochondrial morphology is regulated by continuous fusion and fission events and the misbalance between these two is often accompanied by autophagy. Here, we provide evidence of impaired autophagy in FA. We demonstrate that FA cells have increased number of autophagic (presumably mitophagic) events and accumulate dysfunctional mitochondria due to an impaired ability to degrade them. Moreover, mitochondrial fission accompanied by oxidative stress (OS) is a prerequisite condition for mitophagy in FA and blocking this pathway may release autophagic machinery to clear dysfunctional mitochondria.


Assuntos
Anemia de Fanconi/fisiopatologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Doenças Raras/fisiopatologia , Autofagia , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
Biochim Biophys Acta ; 1865(2): 184-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926806

RESUMO

Given the key role of mitochondria in various cellular events, it is not surprising that mitochondrial dysfunction (MDF) is seen in many pathological conditions, in particular cancer. The mechanisms defining MDF are not clearly understood and may involve genetic defects, misbalance of reactive oxygen species (ROS), impaired autophagy (mitophagy), acquired mutations in mitochondrial or nuclear DNA and inability of cells to cope with the consequences. The importance of MDF arises from its detection in the syndromes with defective DNA damage response (DDR) and cancer predisposition. Here, we will focus on the dual role of these syndromes in cancer predisposition and MDF with specific emphasis on impaired autophagy.


Assuntos
Dano ao DNA , Mitocôndrias/fisiologia , Neoplasias/etiologia , Autofagia , Humanos , Síndrome
18.
Oxid Med Cell Longev ; 2016: 1716341, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26697128

RESUMO

Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.


Assuntos
Quimiorradioterapia/métodos , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias/metabolismo , Neoplasias , Células-Tronco Neoplásicas/metabolismo , Animais , Humanos , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/patologia
19.
Curr Med Chem ; 22(26): 3040-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219394

RESUMO

Oxidative stress, one of the crucial factors of genomic instability, is involved in many illnesses - from DNA damage and repair (DDR) related diseases to neurological abnormalities and cancer. Patients with defective DDR pathways display high level of cancer predisposition and at the same time - reveal hydrocephalia, dementias and even diabetes mellitus - all representing common hallmarks of mitochondria-related disorders. Since mitochondria are responsible both for the cell energetic metabolism and for reactive oxygen/nitrogen species (RO/NS) formation, mitochondrial dysfunction (MDF) play a pivotal role in the above disorders. Not surprisingly, RO/NS are considered to be a primary target for a large spectrum of compounds aiming to eliminate these adverse species or, in contrary, enhance their presence in order to amplify cellular death pathways. Yet, only few chemicals have received medical appreciation mainly because of their questionable therapeutic values in healthy states. As a result, recent efforts have been focused on finding the drugs that improve mitochondrial functions or chemoprevent MDF rather than being applied as RO/NS scavengers. This review addresses the most recent progress in the development and application of such chemicals and outlines some future perspectives.


Assuntos
Descoberta de Drogas/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos
20.
Cancer Lett ; 361(1): 33-8, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25687884

RESUMO

Fanconi anemia (FA) is a rare genetic disorder associated with a bone-marrow failure, genome instability, hypersensitivity to DNA crosslinking agents and a predisposition to cancer. Mutations have been documented in 16 FA genes that participate in the FA-BRCA DNA repair pathway, a fundamental pathway in the development of the disease and the presentation of its symptoms. Besides the well-established role of FA genes in DNA damage and repair pathways, recent reports have revealed an overproduction of epithelial to mesenchymal transition (EMT) factors via a NF-κB-dependent mechanism that results in the proliferation of neighboring tumor cells and FA cells have also been shown to possess damaged mitochondria, accompanied by altered RedOx pathways. This study has focused on reactive oxygen species Modulator-1 (ROMO1), an oncomarker and mitochondrial membrane protein, which is known to be associated with cancer growth and in the modulation of RedOx states in some cancer models. Here, we reveal the role of ROMO1 and demonstrate its link in regulating RedOx states and in the activation of NF-κB-dependent EMT factors in FA.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Anemia de Fanconi/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Apoptose , Western Blotting , Adesão Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , NF-kappa B/genética , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA