Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737275

RESUMO

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

2.
Fluids Barriers CNS ; 20(1): 8, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721242

RESUMO

BACKGROUND: The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS: We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS: TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS: Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Feminino , Gravidez , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Moléculas com Motivos Associados a Patógenos , Ligantes , Lipopolissacarídeos , Proteínas de Neoplasias , Encéfalo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos
3.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883702

RESUMO

There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos , Células Endoteliais/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo , Gravidez
4.
Tissue Barriers ; 9(2): 1860616, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427563

RESUMO

P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-É£. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.


Assuntos
Transporte Biológico/fisiologia , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/genética , Humanos
5.
Cells ; 8(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561453

RESUMO

Extravillous trophoblasts (EVT) migration into the decidua is critical for establishing placental perfusion and when dysregulated, may lead to pre-eclampsia (PE) and intrauterine growth restriction (IUGR). The breast cancer resistance protein (BCRP; encoded by ABCG2) regulates the fusion of cytotrophoblasts into syncytiotrophoblasts and protects the fetus from maternally derived xenobiotics. Information about BCRP function in EVTs is limited, however placental exposure to bacterial/viral infection leads to BCRP downregulation in syncitiotrophoblasts. We hypothesized that BCRP is involved in the regulation of EVT function and is modulated by infection/inflammation. We report that besides syncitiotrophoblasts and cytotrophoblasts, BCRP is also expressed in EVTs. BCRP inhibits EVT cell migration in HTR8/SVneo (human EVT-like) cells and in human EVT explant cultures, while not affecting cell proliferation. We have also shown that bacterial-lipopolysaccharide (LPS)-and viral antigens-single stranded RNA (ssRNA)-have a profound effect in downregulating ABCG2 and BCRP levels, whilst simultaneously increasing the migration potential of EVT-like cells. Our study reports a novel function of BCRP in early placentation and suggests that exposure of EVTs to maternal infection/inflammation could disrupt their migration potential via the downregulation of BCRP. This could negatively influence placental development/function, contribute to existing obstetric pathologies, and negatively impact pregnancy outcomes and maternal/neonatal health.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Viral/efeitos adversos , Trofoblastos/citologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Placentação , Gravidez , Trofoblastos/metabolismo , Trofoblastos/microbiologia , Trofoblastos/virologia
6.
J Cell Mol Med ; 23(1): 610-618, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407748

RESUMO

The ATP-binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal-fetal interface. We and others have demonstrated a gestational age-dependent expression pattern of two ABC transporters, P-glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational-age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Placenta/metabolismo , Transcriptoma/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Idade Gestacional , Humanos , Proteínas de Neoplasias/genética , Gravidez , Trofoblastos/metabolismo
7.
J Cell Mol Med ; 22(7): 3652-3660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691980

RESUMO

The placental multidrug transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP, ABCG2) protect the foetus from exposure to maternally derived glucocorticoids, toxins and xenobiotics. During pregnancy, maternal glucocorticoid levels can be elevated by stress or exogenous administration. We hypothesized that glucocorticoids modulate the expression of ABCB1/P-gp and ABCG2/BCRP in the first trimester human placenta. Our objective was to examine whether dexamethasone (DEX) or cortisol modulate first trimester placental expression of multidrug transporters and determine whether cytotrophoblasts or the syncytiotrophoblast are/is responsible for mediating these effects. Three models were examined: (i) an ex-vivo model of placental villous explants (7-10 weeks), (ii) a model of isolated first trimester syncytiotrophoblast and cytotrophoblast cells and (iii) the BeWo immortalized trophoblast cell line model. These cells/tissues were treated with DEX or cortisol for 24 hour to 72 hour. In first trimester placental explants, DEX (48 hour) increased ABCB1 (P < .001) and ABCG2 (P < .05) mRNA levels, whereas cortisol (48 hour) only increased ABCB1 mRNA levels (P < .01). Dexamethasone (P < .05) and cortisol (P < .01) increased BCRP but did not affect P-gp protein levels. Breast cancer resistance protein expression was primarily confined to syncytiotrophoblasts. BeWo cells, when syncytialized with forskolin, increased expression of BCRP protein, and this was further augmented by DEX (P < .05). Our data suggest that the protective barrier provided by BCRP increases as cytotrophoblasts fuse to form the syncytiotrophoblast. Increase in glucocorticoid levels during the first trimester may reduce embryo/foetal exposure to clinically relevant BCRP substrates, because of an increase in placental BCRP.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Glucocorticoides/farmacologia , Proteínas de Neoplasias/metabolismo , Placenta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Dexametasona/metabolismo , Dexametasona/farmacologia , Feminino , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Proteínas de Neoplasias/genética , Técnicas de Cultura de Órgãos , Placenta/efeitos dos fármacos , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
8.
Cell Physiol Biochem ; 45(2): 591-604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29402780

RESUMO

BACKGROUND/AIMS: The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. METHODS: Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. RESULTS: Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). CONCLUSIONS: Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Corioamnionite/patologia , MicroRNAs/metabolismo , Placenta/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Corioamnionite/genética , Corioamnionite/metabolismo , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Imuno-Histoquímica , Recém-Nascido , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , MicroRNAs/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Gravidez , Nascimento Prematuro , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Regulação para Cima , Adulto Jovem
9.
Am J Pathol ; 185(6): 1666-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25963552

RESUMO

The ABC transporters P-glycoprotein (P-gp, official gene symbol ABCB1) and breast cancer resistance protein (BCRP, official gene symbol ABCG2) protect the conceptus from exposure to toxins and xenobiotics present in the maternal circulation. Viral or bacterial challenges alter expression of placental multidrug transporters in rodents. We hypothesized that exposure to lipopolysaccharide (LPS, bacterial antigen) and polyinosinic-polycytidylic acid (poly(I:C), viral antigen) would decrease P-gp and BCRP in the human placenta. Placental explants from first and third trimesters were challenged with 0.1 to 10 µg/mL LPS or 1 to 50 µg/mL poly(I:C) for 4 or 24 hours; mRNA levels, protein expression, and localization were assessed by quantitative real-time PCR, Western blot analysis, and immunohistochemistry, respectively. Toll-like receptor (TLR)-3 and TLR-4 mRNA expression increased from the first to third trimester (P < 0.01), and the receptors localized to cytotrophoblasts in the first trimester and to syncytiotrophoblasts in the third trimester. LPS exposure in first-trimester explants decreased (P < 0.001) ABCB1 and ABCG2 mRNA and protein levels. In contrast, poly(I:C) decreased (P < 0.05) ABCB1, TLR-3, and TLR-4 mRNA levels in the third trimester but not first trimester. LPS and poly(I:C) treatments increased (P < 0.01) IL-8 and chemokine ligand 2. Results suggest that bacterial infections likely alter exposure of the conceptus to toxins and drugs during early pregnancy, whereas viral infections may disrupt fetal protection in later stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/fisiologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Poli I-C/farmacologia , Gravidez , Primeiro Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor trkB , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA