Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406599

RESUMO

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Assuntos
Aterosclerose , Compostos Férricos , Ferrocianetos , Nanopartículas de Magnetita , Placa Aterosclerótica , Coelhos , Ratos , Animais , Meios de Contraste/química , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Óxido Ferroso-Férrico , Nanopartículas de Magnetita/química , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imageamento por Ressonância Magnética/métodos
2.
Biomed Microdevices ; 26(1): 1, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008813

RESUMO

One of the main challenges in improving the efficacy of conventional chemotherapeutic drugs is that they do not reach the cancer cells at sufficiently high doses while at the same time affecting healthy tissue and causing significant side effects and suffering in cancer patients. To overcome this deficiency, magnetic nanoparticles as transporter systems have emerged as a promising approach to achieve more specific tumour targeting. Drug-loaded magnetic nanoparticles can be directed to the target tissue by applying an external magnetic field. However, the magnetic forces exerted on the nanoparticles fall off rapidly with distance, making the tumour targeting challenging, even more so in the presence of flowing blood or interstitial fluid. We therefore present a computational model of the capturing of magnetic nanoparticles in a test setup: our model includes the flow around the tumour, the magnetic forces that guide the nanoparticles, and the transport within the tumour. We show how a model for the transport of magnetic nanoparticles in an external magnetic field can be integrated with a multiphase tumour model based on the theory of porous media. Our approach based on the underlying physical mechanisms can provide crucial insights into mechanisms that cannot be studied conclusively in experimental research alone. Such a computational model enables an efficient and systematic exploration of the nanoparticle design space, first in a controlled test setup and then in more complex in vivo scenarios. As an effective tool for minimising costly trial-and-error design methods, it expedites translation into clinical practice to improve therapeutic outcomes and limit adverse effects for cancer patients.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Modelos Teóricos , Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos
3.
Int J Nanomedicine ; 18: 2071-2086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113796

RESUMO

Introduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects. Methods: Following the development of a potent iron oxide-based contrast agent SPIONDex, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats. Results: The results demonstrated superior in vitro cyto-, hemo- and immunocompatibility of SPIONDex in comparison to the other two formulations. Intravenous administration of ferucarbotran or ferumoxytol induced strong complement activation-related pseudoallergy in pigs. In contrast, SPIONDex did not elicit any hypersensitivity reactions in the experimental animals. In a rat model, comparable liver imaging properties, but a faster clearance was demonstrated for SPIONDex. Conclusion: The results indicate that SPIONDex possess an exceptional safety compared to the other two formulations, making them a promising candidate for further clinical translation.


Assuntos
Meios de Contraste , Nanopartículas de Magnetita , Ratos , Animais , Suínos , Óxido Ferroso-Férrico , Segurança do Paciente , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade
4.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049199

RESUMO

Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-ß pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.

5.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497463

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are used in nanomedicine as transporter systems for therapeutic cargos, or to magnetize cells to make them magnetically guidable. In cancer treatment, the site-directed delivery of chemotherapeutics or immune effector cells to the tumor can increase the therapeutic efficacy in the target region, and simultaneously reduce toxic side-effects in the rest of the body. To enable the transfer of new methods, such as the nanoparticle-mediated transport from bench to bedside, suitable experimental setups must be developed. In vivo, the SPIONs or SPION-loaded cells must be applied into the blood stream, to finally reach the tumor: consequently, targeting and treatment efficacy should be analyzed under conditions which are as close to in vivo as possible. Here, we established an in vitro method, including tumor spheroids placed in a chamber system under the influence of a magnetic field, and adapted to a peristaltic pump, to mimic the blood flow. This enabled us to analyze the magnetic capture and antitumor effects of magnetically targeted mitoxantrone and immune cells under dynamic conditions. We showed that the magnetic nanoparticle-mediated accumulation increased the anti-tumor effects, and reduced the unspecific distribution of both mitoxantrone and cells. Especially for nanomedical research, investigation of the site-specific targeting of particles, cells or drugs under circulation is important. We conclude that our in vitro setup improves the screening process of nanomedical candidates for cancer treatment.

7.
Adv Mater ; 34(28): e2200653, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595711

RESUMO

A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.


Assuntos
Hidrogéis , Alicerces Teciduais , Endotélio , Hidrogéis/química , Microvasos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Acta Biomater ; 141: 418-428, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999260

RESUMO

Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1ß, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.


Assuntos
Sepse , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias/metabolismo , Citocinas/metabolismo , Escherichia coli/metabolismo , Humanos , Fenômenos Magnéticos , Peptídeos/uso terapêutico , Pseudomonas aeruginosa , Sepse/tratamento farmacológico , Staphylococcus aureus/metabolismo
11.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439296

RESUMO

T cell infiltration into a tumor is associated with a good clinical prognosis of the patient and adoptive T cell therapy can increase anti-tumor immune responses. However, immune cells are often excluded from tumor infiltration and can lack activation due to the immune-suppressive tumor microenvironment. To make T cells controllable by external forces, we loaded primary human CD3+ T cells with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONs). Since the efficacy of magnetic targeting depends on the amount of SPION loading, we investigated how experimental conditions influence nanoparticle uptake and viability of cells. We found that loading in the presence of serum improved both the colloidal stability of SPIONs and viability of T cells, whereas stimulation with CD3/CD28/CD2 and IL-2 did not influence nanoparticle uptake. Furthermore, SPION loading did not impair cytokine secretion after polyclonal stimulation. We finally achieved 1.4 pg iron loading per cell, which was both located intracellularly in vesicles and bound to the plasma membrane. Importantly, nanoparticles did not spill over to non-loaded cells. Since SPION-loading enabled efficient magnetic accumulation of T cells in vitro under dynamic conditions, we conclude that this might be a good starting point for the investigation of in vivo delivery of immune cells.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33760734

RESUMO

Numerous medical applications make use of magnetic nanoparticles, which increase the demand for imaging procedures that are capable of visualizing this kind of particle. Magnetomotive ultrasound (MMUS) is an ultrasound-based imaging modality that can detect tissue, which is permeated by magnetic nanoparticles. However, currently, MMUS can only provide a qualitative mapping of the particle density in the particle-loaded tissue. In this contribution, we present an enhanced MMUS procedure, which enables an estimation of the quantitative level of the local nanoparticle concentration in tissue. The introduced modality involves an adjustment of simulated data to measurement data. To generate these simulated data, the physical processes that arise during the MMUS imaging procedure have to be emulated which can be a computing-intensive proceeding. Since this considerable calculation effort may handicap clinical applications, we further present an efficient approach to calculate the decisive physical quantities and a suitable way to adjust these simulated quantities to the measurement data with only moderate computational effort. For this purpose, we use the result data of a conventional MMUS measurement and the knowledge on the magnetic field quantities and on the mechanical parameters describing the biological tissue, namely, the density, the longitudinal wave velocity, and the shear wave velocity. Experiments on tissue-mimicking phantoms demonstrate that the presented technique can indeed be utilized to determine the local nanoparticle concentration in tissue quantitatively in the correct order of magnitude. By investigating test phantoms of simple geometry, the mean particle concentration of the particle-laden area could be determined with less than 22% deviation to the nominal value.


Assuntos
Nanopartículas de Magnetita , Sistemas de Liberação de Medicamentos , Nanopartículas Magnéticas de Óxido de Ferro , Imagens de Fantasmas , Ultrassonografia
14.
Front Oncol ; 9: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815389

RESUMO

Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging).

15.
Tissue Eng Part A ; 25(21-22): 1470-1477, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30747035

RESUMO

Losing one's ability to speak, because of tissue deficiency at the vocal fold (VF), leads to serious impairment in the quality of life. Until now, there is no successful approach for regenerating the VF. The aim of this study was to show the advantage of magnetic nanoparticles in the generation of scaffold-free three-dimensional (3D) VF cell constructs by magnetic tissue engineering (MTE). Rabbit VF fibroblasts were used to establish MTE: after cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be controlled with a magnetic field thereby forming solid 3D cell structures. To transfer this method into human cells, SPIONs were adapted accordingly and tested for their influence on human VF (hVF) cells and for their ability to perform MTE with hVF cells. Of interest, the cell number and the magnet's shape influence the form of the rabbit VF cell construct. After successful characterization of hVF cells, biocompatibility analyses revealed no significant influence of SPIONs on them, thus 3D hVF cell constructs could be successfully generated by MTE. These basic results are important to develop MTE as an innovative method to regenerate functional VFs. We expect that in vivo studies, including MTE as an elegant, far-field controlled and touchless technology, will translate MTE VF bioconstructs into reconstructive laryngeal medicine. Impact Statement This study aims at nanotechnology for regenerative medicine by magnetic tissue engineering (MTE). New approaches for vocal fold (VF) reconstruction are desperately needed. Superparamagnetic iron oxide nanoparticles offer innovative, scaffold-free potentials for tissue engineering: MTE. By using MTE we could generate functional multilayered human VF cell constructs, which can consequently be used to regenerate the voice in patients with VF injuries.


Assuntos
Compostos Férricos/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Engenharia Tecidual/métodos , Prega Vocal/fisiologia , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Coelhos , Alicerces Teciduais/química
16.
Colloids Surf B Biointerfaces ; 174: 95-102, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445255

RESUMO

Systemic inflammation such as sepsis represents an acute life-threatening condition, to which often no timely remedy can be found. A promising strategy may be to functionalize magnetic nanoparticles with specific peptides, derived from the binding motives of agglutinating salivary proteins, that allow immobilization of pathogens. In this work, superparamagnetic iron oxide nanoparticles with stable polycondensed aminoalkylsilane layer were developed, to which the heterobifunctional linkers N-succinimidyl 3-(2-pyridyldithio)-propanoate (SDPD) and N-succinimidyl bromoacetate (SBA) were bound. These linkers were further chemoselectively reacted with the thiol group of singularly present cysteines of selected peptides. The resulting functional nanoparticles underwent a detailed physicochemical characterization. The biocompatibility of the primarily coated aminoalkylsilane particles was also investigated. To test the pathogen-binding efficacy of the particles, the lipopolysaccharide-immobilization capacity of the peptide-coated particles was compared with free peptides. Here, one particle-bound peptide species succeeded in capturing 90% of the toxin, whereas the degree of immobilization of the toxin with a system that varied in the sequence of the peptide dropped to 35%. With these promising results, we hope to develop extracorporeal magnetic clearance systems for removing pathogens from the human body in order to accelerate diagnosis and alleviate acute disease conditions such as sepsis.


Assuntos
Endotoxinas/metabolismo , Compostos Férricos/metabolismo , Lipopolissacarídeos/metabolismo , Nanopartículas de Magnetita/química , Fragmentos de Peptídeos/metabolismo , Compostos Férricos/química , Humanos , Células Jurkat , Fragmentos de Peptídeos/química
17.
Int J Nanomedicine ; 13: 8443-8460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30587970

RESUMO

INTRODUCTION: Magnetic drug targeting utilizes superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate drugs in specified vasculature regions. METHODS: We produced SPIONs conjugated with dexamethasone phosphate (SPION-DEXA). The efficacy of magnetic drug targeting was investigated in a rabbit model of atherosclerosis induced by balloon injury and high cholesterol diet. RESULTS: In vitro, SPION-DEXA were well-tolerated by endothelial cells. SPION-DEXA were internalized by human peripheral blood mononuclear cells and induced CD163 expression comparable with the free drug. In vivo, magnetic targeting of SPIONs to abdominal aorta was confirmed by histology. Upon vascular injury followed by high-cholesterol diet, early administration of SPION-DEXA enhanced the inflammatory burden in the plaques. Increased macrophage content and larger intima- media thickness were observed in animals treated with SPION-DEXA compared with controls. In advanced atherosclerosis, no beneficial effect of local glucocorticoid therapy was detectable. CONCLUSION: Magnetic drug targeting represents an efficient platform to deliver drugs to diseased arteries in vivo. However, targeting of vascular injury in the lipid-rich environment using dexamethasone-conjugated SPIONs may cause accelerated inflammatory response.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Placa Aterosclerótica/tratamento farmacológico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Placa Aterosclerótica/patologia , Coelhos , Receptores de Superfície Celular/metabolismo
19.
Tissue Eng Part A ; 24(5-6): 479-492, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28851253

RESUMO

INTRODUCTION: Axial vascularization represents a mandatory requirement for clinically applied larger scale vascularized bone grafts. The aim of this study was to combine the arteriovenous (AV) loop model in the rat with a critically sized femoral bone defect and to successfully transplant axially vascularized bone constructs into the defect. MATERIALS AND METHODS: In Groups A and C, an AV loop together with a clinically approved hydroxyapatite and beta-tricalcium phosphate (HA/ß-TCP) matrix, mesenchymal stem cells, and recombinant human bone morphogenetic protein 2 were implanted into a newly designed porous titanium chamber with an integrated osteosynthesis plate in the thighs of rats, whereas in Groups B and D, the same matrix composition without AV loop and, in Group E, only the HA/ß-TCP matrix were implanted. After 6 weeks, the constructs were transplanted into a 10 mm femoral defect created in the same leg, in Groups A and C, under preservation of the AV loop pedicle. Group F served as a control group with an empty chamber. Ten days (Groups A and B) and 12 weeks (Groups C-F) after transplantation, the femora together with the constructs were explanted and investigated using computed tomography (CT), micro-CT, X-ray, histology, and real-time polymerase chain reaction (RT-PCR). RESULTS: Ten days after transplantation, Group A showed a maintained vascular supply leading to increased vascularization, cell survival in the scaffold center, and bone generation compared to Group B. After 12 weeks, there was no difference detectable among all groups regarding total vessel number, although Group C, using the AV loop, still showed increased vascularization of the construct center compared to Groups D and E. In Group C, there was still enhanced bone generation detectable compared to the other groups and increased bony fusion rate at the proximal femoral stump. CONCLUSIONS: This study shows the combination of the AV loop model in the rat with a critically sized femoral defect. By maintenance of the vascular supply, the constructs initially showed increased vascularization, leading to increased bone formation and bony fusion in the long term.


Assuntos
Transplante Ósseo/métodos , Fêmur/lesões , Sobrevivência de Enxerto , Transplantes/irrigação sanguínea , Transplantes/transplante , Animais , Proteína Morfogenética Óssea 2/farmacologia , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/farmacologia
20.
Colloids Surf B Biointerfaces ; 161: 18-26, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035747

RESUMO

A rational use of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, diagnostics, and other biomedical applications requires deep understanding of the molecular drug adsorption/desorption mechanisms for proper design of new pharmaceutical formulations. The adsorption and desorption of the cytostatic Mitoxantrone (MTO) to lauric acid-albumin hybrid coated particles SPIONs (SEONLA-HSA) was studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), surface titration, release experiments and small-angle neutron and X-ray scattering. Such MTO-loaded nanoparticles have shown very promising results in in vivo animal models before, while the exact binding mechanism of the drug was unknown. SEONLA-HSA formulations have shown better stability under drug loading in comparison with uncoated nanoparticle and sustainable drug release to compare with protein solution. Adsorption of MTO to SEONLA-HSA leads to decreasing of absolute value of zeta potential and repulsive interaction among particles, which points to the location of separate molecules of MTO on the outer surface of LA-HSA shell.


Assuntos
Albuminas/química , Compostos Férricos/química , Ácidos Láuricos/química , Nanopartículas de Magnetita/química , Mitoxantrona/química , Adsorção , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Mitoxantrona/administração & dosagem , Mitoxantrona/farmacocinética , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA