Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 89: 102017, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182839

RESUMO

OBJECTIVE: Human embryonic stem cell (hESC; SC)-derived pancreatic ß cells can be used to study diabetes pathologies and develop cell replacement therapies. Although current differentiation protocols yield SCß cells with varying degrees of maturation, these cells still differ from deceased donor human ß cells in several respects. We sought to develop a reporter cell line that could be used to dynamically track SCß cell functional maturation. METHODS: To monitor SCß cell maturation in vitro, we created an IAPP-2A-mScar and INSULIN-2A-EGFP dual fluorescent reporter (INS2A-EGFP/+;IAPP2A-mScarlet/+) hESC line using CRISPR/Cas9. Pluripotent SC were then differentiated using a 7-stage protocol to islet-like cells. Immunohistochemistry, flow cytometry, qPCR, GSIS and electrophysiology were used to characterise resulting cell populations. RESULTS: We observed robust expression of EGFP and mScarlet fluorescent proteins in insulin- and IAPP-expressing cells without any compromise to their differentiation. We show that the proportion of insulin-producing cells expressing IAPP increases over a 4-week maturation period, and that a subset of insulin-expressing cells remain IAPP-free. Compared to this IAPP-free population, we show these insulin- and IAPP-expressing cells are less polyhormonal, more glucose-sensitive, and exhibit decreased action potential firing in low (2.8 mM) glucose. CONCLUSIONS: The INS2A-EGFP/+;IAPP2A-mScarlet/+ hESC line provides a useful tool for tracking populations of maturing hESC-derived ß cells in vitro. This tool has already been shared with 3 groups and is freely available to all.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina , Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Linhagem Celular , Sistemas CRISPR-Cas
2.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528526

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Assuntos
Doença Enxerto-Hospedeiro , Insulinas , Transplante das Ilhotas Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Antígeno HLA-A2 , Leucócitos Mononucleares , Rejeição de Enxerto/prevenção & controle
3.
Mol Metab ; 68: 101667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621763

RESUMO

OBJECTIVES: Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer. METHODS: PANC-1, MIA PaCa-2, and H1299 cells were treated with rodent IAPP, and the IAPP analogs pramlintide and davalintide, and assayed for changes in proliferation, death, and glycolysis. An IAPP-deficient mouse model of PDAC (Iapp-/-; Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER) was generated for survival analysis. RESULTS: IAPP did not impact glycolysis in MIA PaCa-2 cells, and did not impact cell death, proliferation, or glycolysis in PANC-1 cells or in H1299 cells, which were previously reported as IAPP-sensitive. Iapp deletion in Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER mice had no effect on survival time to lethal tumour burden. CONCLUSIONS: In contrast to previous reports, we find that IAPP does not function as a tumour suppressor. This suggests that loss of IAPP signalling likely does not increase the risk of pancreatic cancer in individuals with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Camundongos , Animais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
4.
Diabetologia ; 65(5): 811-828, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243521

RESUMO

AIMS/HYPOTHESIS: While pancreatic beta cells have been shown to originate from endocrine progenitors in ductal regions, it remains unclear precisely where beta cells emerge from and which transcripts define newborn beta cells. We therefore investigated characteristics of newborn beta cells extracted by a time-resolved reporter system. METHODS: We established a mouse model, 'Ins1-GFP; Timer', which provides spatial information during beta cell neogenesis with high temporal resolution. Single-cell RNA-sequencing (scRNA-seq) was performed on mouse beta cells sorted by fluorescent reporter to uncover transcriptomic profiles of newborn beta cells. scRNA-seq of human embryonic stem cell (hESC)-derived beta-like cells was also performed to compare newborn beta cell features between mouse and human. RESULTS: Fluorescence imaging of Ins1-GFP; Timer mouse pancreas successfully dissected newly generated beta cells as green fluorescence-dominant cells. This reporter system revealed that, as expected, some newborn beta cells arise close to the ducts (ßduct); unexpectedly, the others arise away from the ducts and adjacent to blood vessels (ßvessel). Single-cell transcriptomic analyses demonstrated five distinct populations among newborn beta cells, confirming spatial heterogeneity of beta cell neogenesis such as high probability of glucagon-positive ßduct, musculoaponeurotic fibrosarcoma oncogene family B (MafB)-positive ßduct and musculoaponeurotic fibrosarcoma oncogene family A (MafA)-positive ßvessel cells. Comparative analysis with scRNA-seq data of mouse newborn beta cells and hESC-derived beta-like cells uncovered transcriptional similarity between mouse and human beta cell neogenesis including microsomal glutathione S-transferase 1 (MGST1)- and synaptotagmin 13 (SYT13)-highly-expressing state. CONCLUSIONS/INTERPRETATION: The combination of time-resolved histological imaging with single-cell transcriptional mapping demonstrated novel features of spatial and transcriptional heterogeneity in beta cell neogenesis, which will lead to a better understanding of beta cell differentiation for future cell therapy. DATA AVAILABILITY: Raw and processed single-cell RNA-sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE155742.


Assuntos
Fibrossarcoma , Células Secretoras de Insulina , Transcriptoma , Animais , Diferenciação Celular/genética , Fibrossarcoma/metabolismo , Glucagon/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Ductos Pancreáticos , RNA
5.
Orphanet J Rare Dis ; 13(1): 86, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012219

RESUMO

BACKGROUND: ATP8A2 mutations have recently been described in several patients with severe, early-onset hypotonia and cognitive impairment. The aim of our study was to characterize the clinical phenotype of patients with ATP8A2 mutations. METHODS: An observational study was conducted at multiple diagnostic centres. Clinical data is presented from 9 unreported and 2 previously reported patients with ATP8A2 mutations. We compare their features with 3 additional patients that have been previously reported in the medical literature. RESULTS: Eleven patients with biallelic ATP8A2 mutations were identified, with a mean age of 9.4 years (range 2.5-28 years). All patients with ATP8A2 mutations (100%) demonstrated developmental delay, severe hypotonia and movement disorders, specifically chorea or choreoathetosis (100%), dystonia (27%) and facial dyskinesia (18%). Optic atrophy was observed in 78% of patients for whom funduscopic examination was performed. Symptom onset in all (100%) was noted before 6 months of age, with 70% having symptoms noted at birth. Feeding difficulties were common (91%) although most patients were able to tolerate pureed or thickened feeds, and 3 patients required gastrostomy tube insertion. MRI of the brain was normal in 50% of the patients. A smaller proportion was noted to have mild cortical atrophy (30%), delayed myelination (20%) and/or hypoplastic optic nerves (20%). Functional studies were performed on differentiated induced pluripotent cells from one child, which confirmed a decrease in ATP8A2 expression compared to control cells. CONCLUSIONS: ATP8A2 gene mutations have emerged as the cause of a novel neurological phenotype characterized by global developmental delays, severe hypotonia and hyperkinetic movement disorders, the latter being an important distinguishing feature. Optic atrophy is common and may only become apparent in the first few years of life, necessitating repeat ophthalmologic evaluation in older children. Early recognition of the cardinal features of this condition will facilitate diagnosis of this complex neurologic disorder.


Assuntos
Adenosina Trifosfatases/genética , Disfunção Cognitiva/genética , Hipotonia Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas de Transferência de Fosfolipídeos/genética , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Humanos , Imageamento por Ressonância Magnética , Hipotonia Muscular/etiologia , Atrofia Óptica/etiologia , Sequenciamento do Exoma
6.
Cell Metab ; 27(6): 1294-1308.e7, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754954

RESUMO

To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track ß cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. ß cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring ß cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of ß cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of ß cell identity in diabetes.


Assuntos
Cromatina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Inativação Gênica , Células Secretoras de Insulina/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/genética , Epigenômica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Hiperglicemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo Repressor Polycomb 2/genética , Análise de Célula Única
7.
J Biol Chem ; 291(6): 2682-95, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26663079

RESUMO

Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Sinalização do Cálcio/efeitos dos fármacos , Citotoxinas/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Tacrolimo/efeitos adversos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Calcineurina/genética , Calcineurina/metabolismo , Citotoxinas/farmacologia , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tacrolimo/farmacologia , Ubiquitina/genética , Ubiquitina/metabolismo
8.
Trends Endocrinol Metab ; 26(1): 49-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25500169

RESUMO

As a sensory micro-organ, pancreatic ß-cells continually respond to nutritional signals and neuroendocrine input from other glucoregulatory organs. This sensory ability is essential for normal ß-cell function and systemic glucose homeostasis. Period circadian protein (Per)-aryl hydrocarbon receptor nuclear translocator protein (Arnt)-single-minded protein (Sim) (PAS) domain proteins have a conserved role as sensory proteins, critical in adaptation to changes in voltage, oxygen potential, and xenobiotics. Within ß-cells, PAS domain proteins such as hypoxia inducible factor 1α (Hif1α), Arnt, PAS kinase, Bmal1, and Clock respond to disparate stimuli, but act in concert to maintain proper ß-cell function. Elucidating the function of these factors in islets offers a unique insight into the sensing capacity of ß-cells, the consequences of impaired sensory function, and the potential to develop novel therapeutic targets for preserving ß-cell function in diabetes.


Assuntos
Diabetes Mellitus/genética , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Proteínas Circadianas Period/química , Proteínas Circadianas Period/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Estrutura Terciária de Proteína , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia
9.
Diabetes ; 63(9): 2984-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24812426

RESUMO

Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated the effects of α-cell gp130 receptor signaling on glycemic control in type 2 diabetes. IL-6 family cytokines were elevated in islets in rodent models of this disease. gp130 receptor activation increased STAT3 phosphorylation in primary α-cells and stimulated glucagon secretion. Pancreatic α-cell gp130 knockout (αgp130KO) mice showed no differences in glycemic control, α-cell function, or α-cell mass. However, when subjected to streptozotocin plus high-fat diet to induce islet inflammation and pathophysiology modeling type 2 diabetes, αgp130KO mice had reduced fasting glycemia, improved glucose tolerance, reduced fasting insulin, and improved α-cell function. Hyperinsulinemic-euglycemic clamps revealed no differences in insulin sensitivity. We conclude that in a setting of islet inflammation and pathophysiology modeling type 2 diabetes, activation of α-cell gp130 receptor signaling has deleterious effects on α-cell function, promoting hyperglycemia. Antagonism of α-cell gp130 receptor signaling may be useful for the treatment of type 2 diabetes.


Assuntos
Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Glucagon/metabolismo , Animais , Receptor gp130 de Citocina/antagonistas & inibidores , Dieta Hiperlipídica , Glucagon/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Ratos , Fator de Transcrição STAT3/metabolismo
10.
Stem Cell Res ; 12(1): 194-208, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24257076

RESUMO

Human embryonic stem cells (hESCs) were used as a model system of human pancreas development to study characteristics of the polyhormonal cells that arise during fetal pancreas development. HESCs were differentiated into fetal-like pancreatic cells in vitro using a 33-day, 7-stage protocol. Cultures were ~90-95% PDX1-positive by day (d) 11 and 70-75% NKX6.1-positive by d17. Polyhormonal cells were scattered at d17, but developed into islet-like clusters that expressed key transcription factors by d33. Human C-peptide and glucagon secretion were first detected at d17 and increased thereafter in parallel with INS and GCG transcript levels. HESC-derived cells were responsive to KCl and arginine, but not glucose in perifusion studies. Compared to adult human islets, hESC-derived cells expressed ~10-fold higher levels of glucose transporter 1 (GLUT1) mRNA, but similar levels of glucokinase (GCK). In situ hybridization confirmed the presence of GLUT1 transcript within endocrine cells. However, GLUT1 protein was excluded from this population and was instead observed predominantly in non-endocrine cells, whereas GCK was co-expressed in insulin-positive cells. In rubidium efflux assays, hESC-derived cells displayed mild potassium channel activity, but no responsiveness to glucose, metabolic inhibitors or glibenclamide. Western blotting experiments revealed that the higher molecular weight SUR1 band was absent in hESC-derived cells, suggesting a lack of functional KATP channels at the cell surface. In addition, KATP channel subunit transcript levels were not at a 1:1 ratio, as would be expected (SUR1 levels were ~5-fold lower than KIR6.2). Various ratios of SUR1:KIR6.2 plasmids were transfected into COSM6 cells and rubidium efflux was found to be particularly sensitive to a reduction in SUR1. These data suggest that an impaired ratio of SUR1:KIR6.2 may contribute to the observed KATP channel defects in hESC-derived islet endocrine cells, and along with lack of GLUT1, may explain the absence of glucose-stimulated insulin secretion.


Assuntos
Células-Tronco Embrionárias/citologia , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeo C/metabolismo , Diferenciação Celular , Células Endócrinas/citologia , Células Endócrinas/metabolismo , Glucoquinase/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glibureto/farmacologia , Hormônios/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo
11.
PLoS One ; 7(3): e32675, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412906

RESUMO

In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.


Assuntos
Multimerização Proteica , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Sequência Consenso , AMP Cíclico/biossíntese , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glicosilação , Humanos , Insulina/metabolismo , Secreção de Insulina , Ligantes , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Glucagon/química , Receptores de Glucagon/genética , Alinhamento de Sequência
12.
Nature ; 463(7282): 775-80, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148032

RESUMO

Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Insulina/biossíntese , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/congênito , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos/genética , Testes Genéticos , Humanos , Recém-Nascido , Ilhotas Pancreáticas/embriologia , Masculino , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fatores de Transcrição de Fator Regulador X , Síndrome , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
13.
Endocr Relat Cancer ; 16(1): 267-79, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18987169

RESUMO

The homeodomain transcription factor NKX2.2 is necessary for neuroendocrine (NE) differentiation in the central nervous system and pancreas. NE tumors derived from the gut are defined by their NE phenotype, which is used for diagnosis and contributes to tumorigenicity. We hypothesized that NKX2.2 is important for NE differentiation in normal and neoplastic gut. NKX2.2 and NE marker expression was investigated in the small intestine of embryonic and adult mice using immunofluorescence (IF). To determine the role of NKX2.2 in NE differentiation of the intestine, the phenotype of Nkx2.2 (-/-) mice was examined by IF and real-time (RT)-PCR. NKX2.2 and NE marker expression in human NE tumors of the gut and normal tissues were evaluated by immunohistochemistry and qRT-PCR. NKX2.2 expression was detected in the intervillus/crypt regions of embryonic and adult mouse intestine. Co-expression of Nkx2.2 with neurogenin3 (NEUROG3) and hormones was observed in the adult intestinal crypt compartment, suggesting NKX2.2 functions in NEUROG3-positive endocrine progenitors and newly differentiated endocrine cells. In the intestine of Nkx2.2 (-/-) mice, we found a dramatic reduction in the number of cells producing numerous hormones, such as serotonin, gastrin, cholecystokinin, somatostatin, glucagon-like peptide 1 (GLP-1), and secretin, but an increase in cells producing ghrelin. NKX2.2 was expressed in most (24 of 29) human NE tumors derived from diverse primary sites. We conclude NKX2.2 functions in immature endocrine cells to control NE differentiation in normal intestine and is expressed in most NE tumors of the gut, and is therefore a novel target of diagnosis for patients with gastrointestinal NE tumors.


Assuntos
Neoplasias Gastrointestinais/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Tumores Neuroendócrinos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Endócrinas/citologia , Células Endócrinas/fisiologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Grelina/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/embriologia , Intestino Delgado/citologia , Intestino Delgado/embriologia , Camundongos , Camundongos Mutantes , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Proteínas Nucleares , Proteínas de Peixe-Zebra
14.
J Med Chem ; 51(17): 5387-96, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18707090

RESUMO

Optimization of a new series of small molecule human glucagon receptor (hGluR) antagonists is described. In the process of optimizing glucagon receptor antagonists, we counter-screened against the closely related human gastric inhibitory polypeptide receptor (hGIPR), and through structure activity analysis, we obtained compounds with low nanomolar affinities toward the hGluR, which were selective against the hGIPR and the human glucagon-like peptide-1 receptor (hGLP-1R). In the best cases, we obtained a >50 fold selectivity for the hGluR over the hGIPR and a >1000 fold selectivity over the hGLP-1R. A potent and selective glucagon receptor antagonist was demonstrated to inhibit glucagon-induced glycogenolysis in primary rat hepatocytes as well as to lower glucagon-induced hyperglycemia in Sprague-Dawley rats. Furthermore, the compound was shown to lower blood glucose in the ob/ob mouse after oral dosing.


Assuntos
Hiperglicemia/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/antagonistas & inibidores , Animais , Glicemia/efeitos dos fármacos , Células Cultivadas , Glicogenólise/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Obesos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Relação Estrutura-Atividade
15.
Diabetes ; 52(3): 741-50, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12606516

RESUMO

Recent studies into the physiology of the incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have added stimulation of beta-cell growth, differentiation, and cell survival to well-documented, potent insulinotropic effects. Unfortunately, the therapeutic potential of these hormones is limited by their rapid enzymatic inactivation in vivo by dipeptidyl peptidase IV (DP IV). Inhibition of DP IV, so as to enhance circulating incretin levels, has proved effective in the treatment of type 2 diabetes both in humans and in animal models, stimulating improvements in glucose tolerance, insulin sensitivity, and beta-cell function. We hypothesized that enhancement of the cytoprotective and beta-cell regenerative effects of GIP and GLP-1 might extend the therapeutic potential of DP IV inhibitors to include type 1 diabetes. For testing this hypothesis, male Wistar rats, exposed to a single dose of streptozotocin (STZ; 50 mg/kg), were treated twice daily with the DP IV inhibitor P32/98 for 7 weeks. Relative to STZ-injected controls, P32/98-treated animals displayed increased weight gain (230%) and nutrient intake, decreased fed blood glucose ( approximately 26 vs. approximately 20 mmol/l, respectively), and a return of plasma insulin values toward normal (0.07 vs. 0.12 nmol/l, respectively). Marked improvements in oral glucose tolerance, suggesting enhanced insulin secretory capacity, were corroborated by pancreas perfusion and insulin content measurements that revealed two- to eightfold increases in both secretory function and insulin content after 7 weeks of treatment. Immunohistochemical analyses of pancreatic sections showed marked increases in the number of small islets (+35%) and total beta-cells (+120%) and in the islet beta-cell fraction (12% control vs. 24% treated) in the treated animals, suggesting that DP IV inhibitor treatment enhanced islet neogenesis, beta-cell survival, and insulin biosynthesis. In vitro studies using a beta-(INS-1) cell line showed a dose-dependent prevention of STZ-induced apoptotic cell-death by both GIP and GLP-1, supporting a role for the incretins in eliciting the in vivo results. These novel findings provide evidence to support the potential utility of DP IV inhibitors in the treatment of type 1 and possibly late-stage type 2 diabetes.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Dipeptidil Peptidase 4 , Ilhotas Pancreáticas/patologia , Inibidores de Proteases/uso terapêutico , Animais , Glicemia/análise , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Dipeptidil Peptidase 4/sangue , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/administração & dosagem , Glucagon/administração & dosagem , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon , Peptídeos Semelhantes ao Glucagon , Teste de Tolerância a Glucose , Imuno-Histoquímica , Insulina/análise , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Lipídeos/sangue , Fígado/enzimologia , Masculino , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/sangue , Fosfoenolpiruvato Carboxiquinase (GTP)/análise , Precursores de Proteínas/administração & dosagem , Precursores de Proteínas/sangue , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
16.
Am J Physiol Endocrinol Metab ; 284(5): E931-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12540373

RESUMO

The incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that act via the enteroinsular axis to potentiate insulin secretion from the pancreas in a glucose-dependent manner. Both GLP-1 receptor and GIP receptor knockout mice (GLP-1R(-/-) and GIPR(-/-), respectively) have been generated to investigate the physiological importance of this axis. Although reduced GIP action is a component of type 2 diabetes, GIPR-deficient mice exhibit only moderately impaired glucose tolerance. The present study was directed at investigating possible compensatory mechanisms that take place within the enteroinsular axis in the absence of GIP action. Although serum total GLP-1 levels in GIPR knockout mice were unaltered, insulin responses to GLP-1 from pancreas perfusions and static islet incubations were significantly greater (40-60%) in GIPR(-/-) than in wild-type (GIPR(+/+)) mice. Furthermore, GLP-1-induced cAMP production was also elevated twofold in the islets of the knockout animals. Pancreatic insulin content and gene expression were reduced in GIPR(-/-) mice compared with GIPR(+/+) mice. Paradoxically, immunocytochemical studies showed a significant increase in beta-cell area in the GIPR-null mice but with less intense staining for insulin. In conclusion, GIPR(-/-) mice exhibit altered islet structure and topography and increased islet sensitivity to GLP-1 despite a decrease in pancreatic insulin content and gene expression.


Assuntos
Adaptação Fisiológica , Intestinos/fisiologia , Ilhotas Pancreáticas/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Arginina/farmacologia , AMP Cíclico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Glucagon/genética , Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Glucose/farmacologia , Teste de Tolerância a Glucose , Imuno-Histoquímica , Técnicas In Vitro , Insulina/fisiologia , Membranas Intracelulares/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Precursores de Proteínas/genética , Precursores de Proteínas/farmacologia , RNA Mensageiro/metabolismo
17.
FASEB J ; 17(1): 91-3, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12475913

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is secreted postprandially and acts in concert with glucose to stimulate insulin secretion from the pancreas. Here, we describe a novel pathway for the regulation of GIP receptor (GIPR) expression within clonal beta-cell lines, pancreatic islets, and in vivo. High (25 mM) glucose was able to significantly reduce GIPR mRNA levels in INS(832/13) cells after only 6 h. In contrast, palmitic acid (2 mM) and WY 14643 (100 microM) stimulated approximate doublings of GIPR expression in INS(832/13) cells under low (5.5 mM), but not high (25 mM), glucose conditions, suggesting that fat can regulate GIPR expression via PPARalpha in a glucose-dependent manner. Both MK-886, an antagonist of PPARalpha, and a dominant negative form of PPARalpha transfected into INS(832/13) cells caused a significant reduction in GIPR expression in low, but not high, glucose conditions. Finally, in hyperglycemic clamped rats, there was a 70% reduction in GIPR expression in the islets and a 71% reduction in GIP-stimulated insulin secretion from the perfused pancreas. Thus, evidence is presented that the GIPR is controlled at normoglycemia by the fatty acid load on the islet; however, when exposed to hyperglycemic conditions, the GIPR is down-regulated, which may contribute to the decreased responsiveness to GIP that is observed in type 2 diabetes.


Assuntos
Regulação para Baixo , Ilhotas Pancreáticas/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ácidos Graxos/farmacologia , Regulação da Expressão Gênica , Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Cinética , Modelos Biológicos , RNA Mensageiro/biossíntese , Ratos , Ratos Zucker , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores dos Hormônios Gastrointestinais/genética , Fatores de Transcrição/agonistas , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA