Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(4): e63473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37964495

RESUMO

Ophthalmological conditions are underreported in patients with KBG syndrome, which is classically described as presenting with dental, developmental, intellectual, skeletal, and craniofacial abnormalities. This study analyzed the prevalence of four ophthalmological conditions (strabismus, astigmatism, myopia, hyperopia) in 43 patients with KBG syndrome carrying variants in ANKRD11 or deletions in 16q24.3 and compared it to the literature. Forty-three patients were recruited via self-referral or a private Facebook group hosted by the KBG Foundation, with 40 of them having pathogenic or likely pathogenic variants. Virtual interviews were conducted to collect a comprehensive medical history verified by medical records. From these records, data analysis was performed to calculate the prevalence of ophthalmological conditions. Out of the 40 participants with pathogenic or likely pathogenic variants, strabismus was reported in 9 (22.5%) participants, while astigmatism, myopia, and hyperopia were reported in 11 (27.5%), 6 (15.0%), and 8 (20.0%) participants, respectively. Other reported conditions include anisometropia, amblyopia, and nystagmus. When compared to the literature, the prevalence of strabismus and refractive errors is higher than other studies. However, more research is needed to determine if variants in ANKRD11 play a role in abnormal development of the visual system. In patients with established KBG syndrome, screening for misalignment or refractive errors should be done, as interventions in patients with these conditions can improve functioning and quality of life.


Assuntos
Anormalidades Múltiplas , Astigmatismo , Doenças do Desenvolvimento Ósseo , Hiperopia , Deficiência Intelectual , Miopia , Erros de Refração , Estrabismo , Anormalidades Dentárias , Humanos , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/diagnóstico , Anormalidades Dentárias/epidemiologia , Anormalidades Dentárias/genética , Anormalidades Dentárias/diagnóstico , Fácies , Hiperopia/epidemiologia , Hiperopia/genética , Qualidade de Vida , Erros de Refração/epidemiologia , Erros de Refração/genética , Erros de Refração/diagnóstico , Fatores de Transcrição , Miopia/diagnóstico , Miopia/epidemiologia , Miopia/genética
2.
Am J Med Genet A ; 191(9): 2364-2375, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226940

RESUMO

Ankyrin Repeat Domain 11 (ANKRD11) gene mutations are associated with KBG syndrome, a developmental disability that affects multiple organ systems. The function of ANKRD11 in human growth and development is not clear, but gene knockout or mutation are lethal in mice embryos and/or pups. In addition, it plays a vital role in chromatin regulation and transcription. Individuals with KBG syndrome are often misdiagnosed or remain undiagnosed until later in life. This is largely due to KBG syndrome's varying and nonspecific phenotypes as well as a lack of accessible genetic testing and prenatal screening. This study documents perinatal outcomes for individuals with KBG syndrome. We obtained data from 42 individuals through videoconferences, medical records, and emails. 45.2% of our cohort was born by C-section, 33.3% had a congenital heart defect, 23.8% were born prematurely, 23.8% were admitted to the NICU, 14.3% were small for gestational age, and 14.3% of the families had a history of miscarriage. These rates were higher in our cohort compared to the overall population, including non-Hispanic and Hispanic populations. Other reports included feeding difficulties (21.4%), neonatal jaundice (14.3%), decreased fetal movement (7.1%), and pleural effusions in utero (4.7%). Comprehensive perinatal studies about KBG syndrome and updated documentation of its phenotypes are important in ensuring prompt diagnosis and can facilitate correct management.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Adolescente , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Prevalência , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Documentação
3.
Eur J Hum Genet ; 30(11): 1244-1254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970914

RESUMO

Genetic variants in Ankyrin Repeat Domain 11 (ANKRD11) and deletions in 16q24.3 are known to cause KBG syndrome, a rare syndrome associated with craniofacial, intellectual, and neurobehavioral anomalies. We report 25 unpublished individuals from 22 families with molecularly confirmed diagnoses. Twelve individuals have de novo variants, three have inherited variants, and one is inherited from a parent with low-level mosaicism. The mode of inheritance was unknown for nine individuals. Twenty are truncating variants, and the remaining five are missense (three of which are found in one family). We present a protocol emphasizing the use of videoconference and artificial intelligence (AI) in collecting and analyzing data for this rare syndrome. A single clinician interviewed 25 individuals throughout eight countries. Participants' medical records were reviewed, and data was uploaded to the Human Disease Gene website using Human Phenotype Ontology (HPO) terms. Photos of the participants were analyzed by the GestaltMatcher and DeepGestalt, Face2Gene platform (FDNA Inc, USA) algorithms. Within our cohort, common traits included short stature, macrodontia, anteverted nares, wide nasal bridge, wide nasal base, thick eyebrows, synophrys and hypertelorism. Behavioral issues and global developmental delays were widely present. Neurologic abnormalities including seizures and/or EEG abnormalities were common (44%), suggesting that early detection and seizure prophylaxis could be an important point of intervention. Almost a quarter (24%) were diagnosed with attention deficit hyperactivity disorder and 28% were diagnosed with autism spectrum disorder. Based on the data, we provide a set of recommendations regarding diagnostic and treatment approaches for KBG syndrome.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Inteligência Artificial , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Comunicação por Videoconferência
4.
Artigo em Inglês | MEDLINE | ID: mdl-32532879

RESUMO

A 9-yr 8-mo-old right-handed female presented with a history of gait difficulties, which first became apparent at age 9 mo of age, along with slurred speech and hand tremors while holding a tray. Her past medical history was significant for global developmental delay, and she was attending fourth grade special education classes. On examination, she had an ataxic gait, dysarthria, absent deep tendon reflexes, and flexor plantar responses. There were no signs of optic atrophy or hearing loss. Nerve conduction studies were consistent with an axonal neuropathy. A fascicular sural nerve biopsy showed a marked decrease of myelinated fibers larger than 6 µm in diameter as compared with an age-matched control. By electron microscopy, clusters of degenerating axonal mitochondria in both myelinated and unmyelinated fibers were frequently found. Whole-exome sequencing revealed a heterozygous c.314C > T (p.Thr105Met) missense variant in MFN2 in the patient but not in her mother. The father was unavailable for testing. The phenotypes with MFN2 variants can be quite variable, including intellectual disability, optic atrophy, auditory impairment, spinal atrophy with or without hydromyelia, and hydrocephalus. We report here that early onset ataxia with intellectual disability can also be associated with MFN2-related Charcot-Marie-Tooth, Type 2A2A diagnosis, the most common type of autosomal dominant axonal neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Fenótipo , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Idade de Início , Axônios/ultraestrutura , Biomarcadores , Mapeamento Cromossômico , Família , Feminino , GTP Fosfo-Hidrolases/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Lactente , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Mutação , Gravidez , Avaliação de Sintomas , Sequenciamento do Exoma
5.
Artigo em Inglês | MEDLINE | ID: mdl-31387860

RESUMO

Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressing neurological disease present in two of six siblings with early childhood onset of severe progressive spastic paraparesis and learning disabilities. A homozygous mutation (c.2005G>T, p, V669L) was found in VAC14, and the clinical phenotype is consistent with the recently described VAC14-related striatonigral degeneration, childhood-onset syndrome (SNDC) (MIM#617054). However, the phenotype includes a distinct clinical presentation of retinitis pigmentosa (RP), which has not previously been reported in association with VAC14 mutations. Brain magnetic resonance imaging (MRI) revealed abnormal magnetic susceptibility in the globus pallidus, which can be seen in neurodegeneration with brain iron accumulation (NBIA). RP is a group of inherited retinal diseases with phenotypic/genetic heterogeneity, and the pathophysiologic basis of RP is not completely understood but is thought to be due to a primary retinal photoreceptor cell degenerative process. Most cases of RP are seen in isolation (nonsyndromic); this is a report of RP in two siblings with VAC14-associated syndrome, and it is suggested that a connection between RP and VAC14-associated syndrome should be explored in future studies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Retinose Pigmentar/genética , Adolescente , Encéfalo/patologia , Exoma/genética , Família , Feminino , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Paraparesia Espástica/genética , Linhagem , Fenótipo , Retina/patologia , Retinose Pigmentar/metabolismo , Irmãos , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
6.
Am J Hum Genet ; 105(2): 302-316, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256877

RESUMO

Members of a paralogous gene family in which variation in one gene is known to cause disease are eight times more likely to also be associated with human disease. Recent studies have elucidated DHX30 and DDX3X as genes for which pathogenic variant alleles are involved in neurodevelopmental disorders. We hypothesized that variants in paralogous genes encoding members of the DExD/H-box RNA helicase superfamily might also underlie developmental delay and/or intellectual disability (DD and/or ID) disease phenotypes. Here we describe 15 unrelated individuals who have DD and/or ID, central nervous system (CNS) dysfunction, vertebral anomalies, and dysmorphic features and were found to have probably damaging variants in DExD/H-box RNA helicase genes. In addition, these individuals exhibit a variety of other tissue and organ system involvement including ocular, outer ear, hearing, cardiac, and kidney tissues. Five individuals with homozygous (one), compound-heterozygous (two), or de novo (two) missense variants in DHX37 were identified by exome sequencing. We identified ten total individuals with missense variants in three other DDX/DHX paralogs: DHX16 (four individuals), DDX54 (three individuals), and DHX34 (three individuals). Most identified variants are rare, predicted to be damaging, and occur at conserved amino acid residues. Taken together, these 15 individuals implicate the DExD/H-box helicases in both dominantly and recessively inherited neurodevelopmental phenotypes and highlight the potential for more than one disease mechanism underlying these disorders.


Assuntos
RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Helicases/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Sequenciamento do Exoma
7.
Cold Spring Harb Mol Case Stud ; 2(6): a001131, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27900361

RESUMO

KBG syndrome is a rare autosomal dominant genetic condition characterized by neurological involvement and distinct facial, hand, and skeletal features. More than 70 cases have been reported; however, it is likely that KBG syndrome is underdiagnosed because of lack of comprehensive characterization of the heterogeneous phenotypic features. We describe the clinical manifestations in a male currently 13 years of age, who exhibited symptoms including epilepsy, severe developmental delay, distinct facial features, and hand anomalies, without a positive genetic diagnosis. Subsequent exome sequencing identified a novel de novo heterozygous single base pair duplication (c.6015dupA) in ANKRD11, which was validated by Sanger sequencing. This single-nucleotide duplication is predicted to lead to a premature stop codon and loss of function in ANKRD11, thereby implicating it as contributing to the proband's symptoms and yielding a molecular diagnosis of KBG syndrome. Before molecular diagnosis, this syndrome was not recognized in the proband, as several key features of the disorder were mild and were not recognized by clinicians, further supporting the concept of variable expressivity in many disorders. Although a diagnosis of cerebral folate deficiency has also been given, its significance for the proband's condition remains uncertain.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Anormalidades Dentárias/genética , Adolescente , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Fácies , Heterozigoto , Humanos , Masculino , Nucleotídeos/genética , Linhagem , Fenótipo , Proteínas Repressoras/metabolismo , Sequenciamento do Exoma/métodos
8.
Gene ; 567(2): 103-31, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25987439

RESUMO

N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.


Assuntos
Acetiltransferase N-Terminal A/fisiologia , Acetiltransferase N-Terminal E/fisiologia , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Hipóxia Celular , Dano ao DNA , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Dados de Sequência Molecular , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal E/química , Neoplasias/enzimologia , Estrutura Terciária de Proteína
9.
Hum Mol Genet ; 24(7): 1956-76, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25489052

RESUMO

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Proteínas/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Mutação , Linhagem , Proteínas/química , Proteínas/genética
11.
Peptides ; 25(9): 1389-403, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15374643

RESUMO

There are two basic types of bacterial communication systems--those in which the signal is directed solely at other organisms and those in which the signal is sensed by the producing organism as well. The former are involved primarily in conjugation; the latter in adaptation to the environment. Gram-positive bacteria use small peptides for both types of signaling, whereas Gram-negative bacteria use homoserine lactones. Since adaptation signals are autoinducers the response is population-density-dependent and has been referred to as "quorum-sensing". Gram-negative bacteria internalize the signals which act upon an intracellular receptor, whereas Gram-positive bacteria use them as ligands for the extracellular receptor of a two-component signaling module. In both cases, the signal activates a complex adaptation response involving many genes.


Assuntos
Proteínas de Bactérias/química , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Bacteriocinas/química , Comunicação Celular , Histidina Quinase , Ligantes , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Staphylococcus aureus/patogenicidade , Transativadores/fisiologia
12.
Proc Natl Acad Sci U S A ; 100(5): 2795-800, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12591958

RESUMO

A method is presented for the rapid detection and characterization of trace amounts of peptides secreted from microorganisms, including pheromones, virulence factors, and quorum-sensing peptides. The procedure, based on targeted multistage MS, uses a novel matrix-assisted laser desorptionionization-ion trap mass spectrometer to overcome limitations of current MS methods (limited dynamic range, signal suppression effects, and chemical noise) that impair observation of low abundance peptides from complex biological matrixes. Here, secreted peptides that are hypothesized to be present in the supernatant, but that may not be sufficiently abundant to be observed in single-stage mass spectra, are subjected to multistage MS. Highly specific fragmentation signatures enable unambiguous identification of the peptides of interest and differentiation of the signals from the background. As examples, we demonstrate the rapid (<1 min) determination of the mating type of cells in colonies of Saccharomyces cerevisiae and the elucidation of autoinducing peptides (AIPs) from supernatants of pathogenic Staphylococci. We confirm the primary structures of the agrD encoded cyclic AIPs of Staphylococcus aureus for groups I, II, and IV and provide direct evidence that the native group-III AIP is a heptapeptide (INCDFLL). We also show that the homologous peptide from Staphylococcus intermedius is a nonapeptide (RIPTSTGFF) with a lactone ring formed through condensation of the serine side chain with the C terminus of the peptide. This is the first demonstration of cyclization in a staphylococcal AIP that occurs via lactone formation. These examples demonstrate the analytical power of the present procedure for characterizing secreted peptides and its potential utility for identifying microorganisms.


Assuntos
Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Staphylococcus aureus/metabolismo , Espectrometria de Massas , Fator de Acasalamento , Peptídeos/química , Transdução de Sinais , Staphylococcus/metabolismo , Virulência
13.
Biochemistry ; 41(31): 10095-104, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146974

RESUMO

Staphylococcal pathogenesis is regulated by a two-component quorum-sensing system, agr, activated upon binding of a self-coded autoinducing peptide (AIP) to the receptor-histidine kinase, AgrC. The AIPs consist of a thiolactone macrocyle and an exocyclic "tail", both of which are important for function. In this report, characterization of the unique AIPs from the four known agr specificity groups of Staphylococcus aureus has been completed, along with analysis of cross-group inhibition of AgrC activation by each of the four AIPs. The following conclusions have been drawn: (i) The native thiolactone macrocyle and tail are necessary and sufficient for full activation by the AIPs, whereas the AIP-I macrocycle alone is a partial agonist. (ii) The native N-terminus is less critical, as that of AIP-I can be modified without affecting bioactivity, although that of AIP-III cannot. (iii) The ring and tail may function differently in different AIPs. Thus the group I and IV AIPs differ at a single (endocyclic) residue, which is the determinant of AIP specificity for these two groups and is essential for function. A similarly critical residue in AIP-II, however, is exocyclic. (iv) Cross-inhibition is more tolerant of sequence and structural diversity than is activation, suggesting that the AIPs interact differently with cognate than with heterologous receptors. (v) Chimeric peptides, in which the tails and macrocycles are switched, do not activate and instead inhibit receptor activation. These data suggest a model in which activation and inhibition involves different binding orientations within the ligand binding pocket of each receptor.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Dados de Sequência Molecular , Transdução de Sinais , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA