Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioconjug Chem ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789102

RESUMO

Antibody effector functions including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are mediated through the interaction of the antibody Fc region with Fcγ receptors present on immune cells. Several approaches have been used to modulate antibody Fc-Fcγ interactions with the goal of driving an effective antitumor immune response, including Fc point mutations and glycan modifications. However, robust antibody-Fcγ engagement and immune cell binding of Fc-enhanced antibodies in the periphery can lead to the unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions. Creating a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation is an ongoing challenge in the field of antibody and immuno-oncology therapeutics. Herein, we describe a method for the reversible chemical modulation of antibody-Fcγ interactions using simple poly(ethylene glycol) (PEG) linkers conjugated to antibody interchain disulfides with maleimide attachments. This method enables dosing of a therapeutic with muted Fcγ engagement that is restored in vivo in a time-dependent manner. The technology was applied to an effector function enhanced agonist CD40 antibody, SEA-CD40, and experiments demonstrate significant reductions in Fc-induced immune activation in vitro and in mice and nonhuman primates despite showing retained efficacy and improved pharmacokinetics compared to the parent antibody. We foresee that this simple, modular system can be rapidly applied to antibodies that suffer from systemic immune activation due to peripheral FcγR binding immediately upon infusion.

2.
Mol Cancer Ther ; 22(12): 1444-1453, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619980

RESUMO

Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells. The antibody component of SGN-B6A is specific for integrin beta-6 and does not bind other alpha-v family members. In preclinical studies, this ADC has demonstrated activity in vivo in models derived from non-small cell lung, pancreatic, pharyngeal, and bladder carcinomas spanning a range of antigen expression levels. In nonclinical toxicology studies in cynomolgus monkeys, doses of up to 5 mg/kg weekly for four doses or 6 mg/kg every 3 weeks for two doses were tolerated. Hematologic toxicities typical of MMAE ADCs were dose limiting, and no significant target-mediated toxicity was observed. A phase I first-in-human study is in progress to evaluate the safety and antitumor activity of SGN-B6A in a variety of solid tumors known to express integrin beta-6 (NCT04389632).


Assuntos
Antineoplásicos , Carcinoma , Imunoconjugados , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Prognóstico , Integrinas , Linhagem Celular Tumoral
3.
Adv Radiat Oncol ; 7(3): 100890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647396

RESUMO

Purpose: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Methods and Materials: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. Results: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. Conclusions: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan.

4.
Comput Biol Med ; 135: 104624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247131

RESUMO

The prediction by classification of side effects incidence in a given medical treatment is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., disease positive/negative). Similar to statistical inference modelling, ML modelling is subject to the class imbalance problem and is affected by the majority class, increasing the false-negative rate. In this study, seventy-nine ML models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight different countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations from the international study of RT related toxicity "REQUITE". We also examined the effect of sampling techniques and cost-sensitive learning methods on the models when dealing with class imbalance. The combinations of such techniques used had a significant impact on the classification. They resulted in an improvement in incidence status prediction by shifting classifiers' attention to the minority group. The best classification model for RT acute toxicity prediction was identified based on domain experts' success criteria. The Area Under Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged from 0.50 to 0.77. The scale of improved results is promising and will guide further development of models to predict RT acute toxicities. One model was optimised and found to be beneficial to identify patients who are at risk of developing acute RT early-stage toxicities as a result of undergoing breast RT ensuring relevant treatment interventions can be appropriately targeted. The design of the approach presented in this paper resulted in producing a preclinical-valid prediction model. The study was developed by a multi-disciplinary collaboration of data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network.


Assuntos
Ciência de Dados , Aprendizado de Máquina , Algoritmos , Humanos , Modelos Estatísticos
5.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857019

RESUMO

Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication, as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here, we uncovered a cardiac constitutive photomorphogenesis 9 (COP9) desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels, and function were affected in hearts of classic mouse and human models of ARVD/C affected by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to junctional reduction/loss of CSN6 and human desmosomal mutations destabilizing junctional CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Displasia Arritmogênica Ventricular Direita/metabolismo , Complexo do Signalossomo COP9/metabolismo , Desmossomos/metabolismo , Proteólise , Proteoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Displasia Arritmogênica Ventricular Direita/genética , Complexo do Signalossomo COP9/genética , Desmossomos/genética , Desmossomos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteoma/genética
6.
ChemMedChem ; 16(7): 1077-1081, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33369163

RESUMO

Tubulysins have emerged in recent years as a compelling drug class for delivery to tumor cells via antibodies. The ability of this drug class to exert bystander activity while retaining potency against multidrug-resistant cell lines differentiates them from other microtubule-disrupting agents. Tubulysin M, a synthetic analogue, has proven to be active and well tolerated as an antibody-drug conjugate (ADC) payload, but has the liability of being susceptible to acetate hydrolysis at the C11 position, leading to attenuated potency. In this work, we examine the ability of the drug-linker and conjugation site to preserve acetate stability. Our findings show that, in contrast to a more conventional protease-cleavable dipeptide linker, the ß-glucuronidase-cleavable glucuronide linker protects against acetate hydrolysis and improves ADC activity in vivo. In addition, site-specific conjugation can positively impact both acetate stability and in vivo activity. Together, these findings provide the basis for a highly optimized delivery strategy for tubulysin M.


Assuntos
Imunoconjugados/química , Oligopeptídeos/química , Animais , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Estrutura Molecular , Oligopeptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 20(2): 320-328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288628

RESUMO

Auristatins, a class of clinically validated anti-tubulin agents utilized as payloads in antibody-drug conjugates, are generally classified by their membrane permeability and the extent of cytotoxic bystander activity on neighboring cells after targeted delivery. The drugs typically fall within two categories: membrane permeable monomethyl auristatin E-type molecules with high bystander activities and susceptibility to efflux pumps, or charged and less permeable monomethyl auristatin F (MMAF) analogs with low bystander activities and resistance to efflux pumps. Herein, we report the development of novel auristatins that combine the attributes of each class by having both bystander activity and cytotoxicity on multidrug-resistant (MDR+) cell lines. Structure-based design focused on the hydrophobic functionalization of the N-terminal N-methylvaline of the MMAF scaffold to increase cell permeability. The resulting structure-activity relationships of the new auristatins demonstrate that optimization of hydrophobicity and structure can lead to highly active free drugs and antibody-drug conjugates with in vivo bystander activities.


Assuntos
Aminobenzoatos/uso terapêutico , Oligopeptídeos/uso terapêutico , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Oligopeptídeos/farmacologia , Ratos , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 30(14): 127241, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527543

RESUMO

The tubulysins are an emerging antibody-drug conjugate (ADC) payload that maintain potent anti-proliferative activity against cells that exhibit the multi-drug resistant (MDR) phenotype. These drugs possess a C-11 acetate known to be hydrolytically unstable in plasma, and loss of the acetate significantly attenuates cytotoxicity. Structure-activity relationship studies were undertaken to identify stable C-11 tubulysin analogues that maintain affinity for tubulin and potent cytotoxicity. After identifying several C-11 alkoxy analogues that possess comparable biological activity to tubulysin M with significantly improved plasma stability, additional analogues of both the Ile residue and N-terminal position were synthesized. These studies revealed that minor changes within the tubulin binding site of tubulysin can profoundly alter the activity of this chemotype, particularly against MDR-positive cell types.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antineoplásicos/sangue , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oligopeptídeos/sangue , Oligopeptídeos/química , Relação Estrutura-Atividade
9.
Mol Pharm ; 17(3): 802-809, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31976667

RESUMO

While antibody-drug conjugates (ADCs) are advancing through clinical testing and receiving new marketing approvals, improvements to the technology continue to be developed in both academic and industrial laboratories. Among the key ADC attributes that can be improved upon with new technology are their biodistribution and pharmacokinetic properties. During the course of ADC development, it has become apparent that conjugation of drugs to the surface of a monoclonal antibody can alter its physicochemical characteristics in a manner that results in increased nonspecific interactions and more rapid elimination from plasma. Researchers in the field have typically relied upon in vivo studies in preclinical models to understand how a particular ADC chemistry will impact these biological characteristics. In previous work, we described how animal studies have revealed a relationship between ADC hydrophobicity, pharmacokinetics, and nonspecific hepatic clearance, particularly by sinusoidal endothelium and Kupffer cells. Here, we describe a fluorescence-based assay using cultured Kupffer cells to recapitulate the nonspecific interactions that lead to ADC clearance in an in vitro setting with the aim of developing a tool for predicting the pharmacokinetics of novel ADC designs. Output from this assay has demonstrated an excellent correlation with plasma clearance for a series of closely related ADCs bearing discrete PEG chains of varying length and has proven useful in interrogating the mechanism of the interactions between ADCs and Kupffer cells.


Assuntos
Desenho de Fármacos , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Medula Óssea/metabolismo , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/sangue , Imunoconjugados/química , Injeções Intravenosas , Fígado/metabolismo , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície/efeitos dos fármacos , Distribuição Tecidual
10.
Nat Biotechnol ; 37(7): 761-765, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133742

RESUMO

The use of monoclonal antibodies in cancer therapy is limited by their cross-reactivity to healthy tissue. Tumor targeting has been improved by generating masked antibodies that are selectively activated in the tumor microenvironment, but each such antibody necessitates a custom design. Here, we present a generalizable approach for masking the binding domains of antibodies with a heterodimeric coiled-coil domain that sterically occludes the complementarity-determining regions. On exposure to tumor-associated proteases, such as matrix metalloproteinases 2 and 9, the coiled-coil peptides are cleaved and antigen binding is restored. We test multiple coiled-coil formats and show that the optimized masking domain is broadly applicable to antibodies of interest. Our approach prevents anti-CD3-associated cytokine release in mice and substantially improves circulation half-life by protecting the antibody from an antigen sink. When applied to antibody-drug conjugates, our masked antibodies are preferentially unmasked at the tumor site and have increased anti-tumor efficacy compared with unmasked antibodies in mouse models of cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/terapia , Animais , Anticorpos Monoclonais/química , Sobrevivência Celular , Citocinas/metabolismo , Células HEK293 , Humanos , Imunoconjugados , Integrinas/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
11.
Mol Cancer Ther ; 17(12): 2633-2642, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242091

RESUMO

Antibody-drug conjugates (ADCs) are a therapeutic modality that enables the targeted delivery of cytotoxic drugs to cancer cells. Identification of active payloads with unique mechanisms of action is a key aim of research efforts in the field. Herein, we report the development of inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) as a novel payload for ADC technology. NAMPT is a component of a salvage biosynthetic pathway for NAD, and inhibition of this enzyme results in disruption of primary cellular metabolism leading to cell death. Through derivatization of the prototypical NAMPT inhibitor FK-866, we identified potent analogues with chemical functionality that enables the synthesis of hydrophilic enzyme-cleavable drug linkers. The resulting ADCs displayed NAD depletion in both cell-based assays and tumor xenografts. Antitumor efficacy is demonstrated in five mouse xenograft models using ADCs directed to indication-specific antigens. In rat toxicology models, a nonbinding control ADC was tolerated at >10-fold the typical efficacious dose used in xenografts. Moderate, reversible hematologic effects were observed with ADCs in rats, but there was no evidence for the retinal and cardiac toxicities reported for small-molecule inhibitors. These findings introduce NAMPT inhibitors as active and well-tolerated payloads for ADCs with promise to improve the therapeutic window of NAMPT inhibition and enable application in clinical settings.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Humanos , Imunoconjugados/química , Camundongos SCID , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer Ther ; 17(8): 1752-1760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866744

RESUMO

Although antibody-drug conjugates (ADCs) find increasing applications in cancer treatment, de novo or treatment-emergent resistance mechanisms may impair clinical benefit. Two resistance mechanisms that emerge under prolonged exposure include upregulation of transporter proteins that confer multidrug resistance (MDR+) and loss of cognate antigen expression. New technologies that circumvent these resistance mechanisms may serve to extend the utility of next-generation ADCs. Recently, we developed the quaternary ammonium linker system to expand the scope of conjugatable payloads to include tertiary amines and applied the linker to tubulysins, a highly potent class of tubulin binders that maintain activity in MDR+ cell lines. In this work, tubulysin M, which contains an unstable acetate susceptible to enzymatic hydrolysis, and two stabilized tubulysin analogues were prepared as quaternary ammonium-linked glucuronide-linkers and assessed as ADC payloads in preclinical models. The conjugates were potent across a panel of cancer cell lines and active in tumor xenografts, including those displaying the MDR+ phenotype. The ADCs also demonstrated potent bystander activity in a coculture model comprised of a mixture of antigen-positive and -negative cell lines, and in an antigen-heterogeneous tumor model. Thus, the glucuronide-tubulysin drug-linkers represent a promising ADC payload class, combining conjugate potency in the presence of the MDR+ phenotype and robust activity in models of tumor heterogeneity in a structure-dependent manner. Mol Cancer Ther; 17(8); 1752-60. ©2018 AACR.


Assuntos
Glucuronídeos/metabolismo , Imunoconjugados/metabolismo , Animais , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer Ther ; 16(1): 116-123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062707

RESUMO

The emergence of antibody-drug conjugates (ADC), such as brentuximab vedotin and ado-trastuzumab emtansine, has led to increased efforts to identify new payloads and develop improved drug-linker technologies. Most antibody payloads impart significant hydrophobicity to the ADC, resulting in accelerated plasma clearance and suboptimal in vivo activity, particularly for conjugates with high drug-to-antibody ratios (DAR). We recently reported on the incorporation of a discrete PEG24 polymer as a side chain in a ß-glucuronidase-cleavable monomethylauristatin E (MMAE) linker to provide homogeneous DAR 8 conjugates with decreased plasma clearance and increased antitumor activity in xenograft models relative to a non-PEGylated control. In this work, we optimized the drug-linker by minimizing the size of the PEG side chain and incorporating a self-stabilizing maleimide to prevent payload de-conjugation in vivo Multiple PEG-glucuronide-MMAE linkers were prepared with PEG size up to 24 ethylene oxide units, and homogeneous DAR 8 ADCs were evaluated. A clear relationship was observed between PEG length and conjugate pharmacology when tested in vivo Longer PEG chains resulted in slower clearance, with a threshold length of PEG8 beyond which clearance was not impacted. Conjugates bearing PEG of sufficient length to minimize plasma clearance provided a wider therapeutic window relative to faster clearing conjugates bearing shorter PEGs. A lead PEGylated glucuronide-MMAE linker was identified incorporating a self-stabilizing maleimide and a PEG12 side chain emerged from these efforts, enabling highly potent, homogeneous DAR 8 conjugates and is under consideration for future ADC programs. Mol Cancer Ther; 16(1); 116-23. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Oligopeptídeos , Polietilenoglicóis , Animais , Anticorpos Monoclonais/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/farmacocinética , Maleimidas/química , Maleimidas/farmacologia , Camundongos , Estrutura Molecular , Oligopeptídeos/química , Polietilenoglicóis/química , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Angew Chem Int Ed Engl ; 55(28): 7948-51, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27198854

RESUMO

A strategy for the conjugation of alcohol-containing payloads to antibodies has been developed and involves the methylene alkoxy carbamate (MAC) self-immolative unit. A series of MAC ß-glucuronide model constructs were prepared to evaluate stability and enzymatic release, and the results demonstrated high stability at physiological pH in a substitution-dependent manner. All the MAC model compounds efficiently released alcohol drug surrogates under the action of ß-glucuronidase. To assess the MAC technology for ADCs, the potent microtubule-disrupting agent auristatin E (AE) was incorporated through the norephedrine alcohol. Conjugation of the MAC ß-glucuronide AE drug linker to the anti-CD30 antibody cAC10, and an IgG control antibody, gave potent and immunologically specific activities in vitro and in vivo. These studies validate the MAC self-immolative unit for alcohol-containing payloads within ADCs, a class that has not been widely exploited.


Assuntos
Aminobenzoatos/química , Carbamatos/química , Imunoconjugados/química , Oligopeptídeos/química , Fenilpropanolamina/análogos & derivados , Moduladores de Tubulina/química , Aminobenzoatos/administração & dosagem , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Doença de Hodgkin/tratamento farmacológico , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Oligopeptídeos/uso terapêutico , Moduladores de Tubulina/administração & dosagem , Moduladores de Tubulina/uso terapêutico
15.
Mol Cancer Ther ; 15(5): 938-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944920

RESUMO

A quaternary ammonium-based drug-linker has been developed to expand the scope of antibody-drug conjugate (ADC) payloads to include tertiary amines, a functional group commonly present in biologically active compounds. The linker strategy was exemplified with a ß-glucuronidase-cleavable auristatin E construct. The drug-linker was found to efficiently release free auristatin E (AE) in the presence of ß-glucuronidase and provide ADCs that were highly stable in plasma. Anti-CD30 conjugates comprised of the glucuronide-AE linker were potent and immunologically specific in vitro and in vivo, displaying pharmacologic properties comparable with a carbamate-linked glucuronide-monomethylauristatin E control. The quaternary ammonium linker was then applied to a tubulysin antimitotic drug that contained an N-terminal tertiary amine that was important for activity. A glucuronide-tubulysin quaternary ammonium linker was synthesized and evaluated as an ADC payload, in which the resulting conjugates were found to be potent and immunologically specific in vitro, and displayed a high level of activity in a Hodgkin lymphoma xenograft. Furthermore, the results were superior to those obtained with a related tubulysin derivative containing a secondary amine N-terminus for conjugation using previously known linker technology. The quaternary ammonium linker represents a significant advance in linker technology, enabling stable conjugation of payloads with tertiary amine residues. Mol Cancer Ther; 15(5); 938-45. ©2016 AACR.


Assuntos
Compostos de Amônio/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Imunoconjugados/química , Imunoconjugados/farmacologia , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/farmacocinética , Cinética , Camundongos , Estrutura Molecular , Ligação Proteica , Ratos , Tubulina (Proteína) , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Res ; 76(9): 2710-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921341

RESUMO

Antibody-drug conjugates (ADC) comprise targeting antibodies armed with potent small-molecule payloads. ADCs demonstrate specific cell killing in clinic, but the basis of their antitumor activity is not fully understood. In this study, we investigated the degree to which payload release predicts ADC activity in vitro and in vivo ADCs were generated to target different receptors on the anaplastic large cell lymphoma line L-82, but delivered the same cytotoxic payload (monomethyl auristatin E, MMAE), and we found that the intracellular concentration of released MMAE correlated with in vitro ADC-mediated cytotoxicity independent of target expression or drug:antibody ratios. Intratumoral MMAE concentrations consistently correlated with the extent of tumor growth inhibition in tumor xenograft models. In addition, we developed a robust admixed tumor model consisting of CD30(+) and CD30(-) cancer cells to study how heterogeneity of target antigen expression, a phenomenon often observed in cancer specimens, affects the treatment response. CD30-targeting ADC delivering membrane permeable MMAE or pyrrolobenzodiazepine dimers demonstrated potent bystander killing of neighboring CD30(-) cells. In contrast, a less membrane permeable payload, MMAF, failed to mediate bystander killing in vivo, suggesting local diffusion and distribution of released payloads represents a potential mechanism of ADC-mediated bystander killing. Collectively, our findings establish that the biophysical properties and amount of released payloads are chief factors determining the overall ADC potency and bystander killing. Cancer Res; 76(9); 2710-9. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Oligopeptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Sistemas de Liberação de Medicamentos/métodos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Linfoma/patologia , Espectrometria de Massas , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioanalysis ; 8(1): 55-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26647801

RESUMO

BACKGROUND: Antibody-drug conjugates (ADCs) require multiple assays to characterize their PK. These assays can separately evaluate the ADC by quantifying the antibody or the conjugated drug and may give different answers due to assay measurement differences, heterogeneous nature of ADCs and potential biotransformations that occur in vivo. RESULTS: We present a new version of the antibody-conjugated drug assay for valine-citrulline-linked monomethylauristatin E (vcMMAE) ADCs. A stable isotope-labeled internal standard, protein A affinity capture and solid-phase cleavage of MMAE using papain was used prior to LC-MS/MS analysis. CONCLUSION: The assay was used to assess the difference in ex vivo drug-linker stability of native-cysteine versus engineered cysteine ADCs and to determine the number of drugs per antibody of a native-cysteine ADC in vivo.


Assuntos
Bioensaio/métodos , Imunoconjugados/química , Imunoconjugados/metabolismo , Papaína/metabolismo , Animais , Citrulina/química , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/farmacocinética , Oligopeptídeos/química , Ratos , Valina/química
18.
Nat Biotechnol ; 32(10): 1059-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194818

RESUMO

Many antibody-drug conjugates (ADCs) are unstable in vivo because they are formed from maleimide-containing components conjugated to reactive thiols. These thiosuccinimide linkages undergo two competing reactions in plasma: elimination of the maleimide through a retro-Michael reaction, which results in loss of drug-linker from the ADC, and hydrolysis of the thiosuccinimide ring, which results in a derivative that is resistant to the elimination reaction. In an effort to create linker technologies with improved stability characteristics, we used diaminopropionic acid (DPR) to prepare a drug-linker incorporating a basic amino group adjacent to the maleimide, positioned to provide intramolecular catalysis of thiosuccinimide ring hydrolysis. This basic group induces the thiosuccinimide to undergo rapid hydrolysis at neutral pH and room temperature. Once hydrolyzed, the drug-linker is no longer subject to maleimide elimination reactions, preventing nonspecific deconjugation. In vivo studies demonstrate that the increased stability characteristics can lead to improved ADC antitumor activity and reduced neutropenia.


Assuntos
Anticorpos/química , Antineoplásicos/química , Excipientes/química , Imunoconjugados/química , Maleimidas/química , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Imunoconjugados/farmacologia , Camundongos , Camundongos SCID , Plasma , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hum Mol Genet ; 23(5): 1134-50, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24108106

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) termed a 'disease of the desmosome' is an inherited cardiomyopathy that recently underwent reclassification owing to the identification of left-dominant and biventricular disease forms. Homozygous loss-of-function mutations in the desmosomal component, desmoplakin, are found in patients exhibiting a biventricular form of ARVC; however, no models recapitulate the postnatal hallmarks of the disease as seen in these patients. To gain insights into the homozygous loss-of-function effects of desmoplakin in the heart, we generated cardiomyocyte-specific desmoplakin-deficient mice (DSP-cKO) using ventricular myosin light chain-2-Cre mice. Homozygous DSP-cKO mice are viable but display early ultrastructural defects in desmosomal integrity leading to a cardiomyopathy reminiscent of a biventricular form of ARVC, which includes cell death and fibro-fatty replacement within the ventricle leading to biventricular dysfunction, failure and premature death. DSP-cKO mice also exhibited ventricular arrhythmias that are exacerbated with exercise and catecholamine stimulation. Furthermore, DSP-cKO hearts exhibited right ventricular conduction defects associated with loss of connexin 40 expression and electrical wavefront propagation defects associated with loss of connexin 43 expression. Dose-dependent assessment of the effects of loss of desmoplakin in neonatal ventricular cardiomyocytes revealed primary loss of connexin 43 levels, phosphorylation and function independent of the molecular dissociation of the mechanical junction complex and fibro-fatty manifestation associated with ARVC, suggesting a role for desmoplakin as a primary stabilizer of connexin integrity. In summary, we provide evidence for a novel mouse model, which is reminiscent of the postnatal onset of ARVC while highlighting mechanisms underlying a biventricular form of human ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Conexinas/deficiência , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/mortalidade , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Catecolaminas/farmacologia , Conexina 43/deficiência , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Desmoplaquinas/deficiência , Modelos Animais de Doenças , Eletrocardiografia , Expressão Gênica , Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/anormalidades , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Condicionamento Físico Animal/efeitos adversos , Proteína alfa-5 de Junções Comunicantes
20.
Bioconjug Chem ; 24(7): 1256-63, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23808985

RESUMO

A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.


Assuntos
Benzodiazepinas/química , Ligante CD27/química , Imunoconjugados/farmacologia , Animais , Dimerização , Desenho de Fármacos , Feminino , Meia-Vida , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA