Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2483, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774402

RESUMO

Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.


Assuntos
Antineoplásicos , Aprendizado Profundo , Neoplasias , Humanos , Multiômica , Neoplasias/tratamento farmacológico , Redes Neurais de Computação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
iScience ; 25(2): 103740, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35128352

RESUMO

Elimination of cancerous cells by the immune system is an important mechanism of protection from cancer, however, its effectiveness can be reduced owing to development of resistance and evasion. To understand the systemic immune response in advanced untreated primary colorectal cancer, we analyze immune subtypes and immune evasion via neoantigen-related mechanisms. We identify a distinctive cancer subtype characterized by immune evasion and very poor overall survival. This subtype has less clonal highly expressed neoantigens and high chromosomal instability, resulting in adaptive immune resistance mediated by the immune checkpoint molecules and neoantigen presentation disorders. We also observe that neoantigen depletion caused by immunoediting and high clonal neoantigen load are correlated with a good overall survival. Our results indicate that the status of the tumor microenvironment and neoantigen composition are promising new prognostic biomarkers with potential relevance for treatment plan decisions in advanced CRC.

3.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34368836

RESUMO

Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular, convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of the results returned from such models in a biomedical context remains an open problem. Here we present, an approach applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Algoritmos , Humanos
4.
J Comput Biol ; 24(10): 969-980, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27627442

RESUMO

The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.


Assuntos
Neoplasias Colorretais/genética , Biologia Computacional/métodos , Gráficos por Computador , Epigênese Genética , Redes Reguladoras de Genes , Software , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA