Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(5): 548-559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531647

RESUMO

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Assuntos
RNA de Transferência , RNA , Humanos , Metilação , RNA de Transferência/química , RNA/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética
2.
JCO Precis Oncol ; 8: e2300297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295320

RESUMO

PURPOSE: Neuroblastoma is the most common extracranial solid tumor in childhood. We previously showed that circulating cell-free DNA (cfDNA) and tumor biopsy derived 5-hydroxymethylcytosime (5-hmC) profiles identified patients with neuroblastoma who experienced subsequent relapse. Here, we hypothesized that 5-hmC modifications selectively enriched in cfDNA compared with tumor biopsy samples would identify epigenetic changes associated with aggressive tumor behavior and identify novel biomarkers of outcome in patients with high-risk neuroblastoma. METHODS: 5-hmC profiles from cfDNA (n = 64) and tumor biopsies (n = 48) were compared. Two neuroblastoma cell lines underwent chromatin immunoprecipitation followed by sequencing (ChIP-Seq) for H3K27me3, H3K4me3, and H3K27ac; kethoxal-associated single-stranded DNA sequencing; hmC-Seal for 5-hmC; and RNA-sequencing (RNA-Seq). Genes enriched for both H3K27me3 and H3K4me3 in the included cell lines were defined as bivalent. Using bivalent genes defined in vitro, a bivalent signature was established in three publicly available cohorts of patients with neuroblastoma through gene set variation analysis. Differences between tumors with high or low bivalent signatures were assessed by the Kaplan-Meier method and Cox proportional hazards models. RESULTS: In cfDNA compared with tumor biopsy derived 5-hmC profiles, we found increased 5-hmC deposition on Polycomb Repressive Complex 2 target genes, a finding previously described in the context of bivalent genes. We identified 313 genes that bore bivalent chromatin marks, were enriched for mediators of neuronal differentiation, and were transcriptionally repressed across a panel of heterogeneous neuroblastoma cell lines. In three distinct clinical cohorts, low bivalent signature was significantly and independently associated with worse clinical outcome in patients with high-risk neuroblastoma. CONCLUSION: Low expression of bivalent genes is a biomarker of worse outcome in patients with high-risk neuroblastoma.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres , Neuroblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Prognóstico , Neuroblastoma/genética
3.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693440

RESUMO

Fluxes in human intra- and extracellular copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate (cAMP). We herein applied an unbiased temporal evaluation of the whole-genome transcriptional activities modulated by fluctuations in copper levels to identify the copper sensor proteins responsible for driving these activities. We found that fluctuations in physiologically-relevant copper levels rapidly modulate EGFR/MAPK/ERK signal transduction and activation of the transcription factor cAMP response element-binding protein (CREB). Both intracellular and extracellular assays support Cu 1+ inhibition of the EGFR-phosphatase PTPN2 (and potentially the homologous PTPN1)-via direct ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism of copper-stimulated EGFR signal transduction activation. Depletion of copper represses this signaling pathway. We additionally show i ) copper supplementation drives transcriptional repression of the copper importer CTR1 and ii ) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper-stimulated MAPK/ERK/CREB-signaling and CTR1 expression, thereby uncovering a previously unrecognized link between copper levels and cellular signal transduction.

4.
bioRxiv ; 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163024

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor in childhood and epigenetic dysregulation is a key driver of this embryonal disease. In cell-free DNA from neuroblastoma patients with high-risk disease, we found increased 5-hydroxymethylcytosine (5-hmC) deposition on Polycomb Repressive Complex 2 (PRC2) target genes, a finding previously described in the context of bivalent genes. As bivalent genes, defined as genes bearing both activating (H3K4me3) and repressive (H3K27me3) chromatin modifications, have been shown to play an important role in development and cancer, we investigated the potential role of bivalent genes in maintaining a de-differentiated state in neuroblastoma and their potential use as a biomarker. We identified 313 genes that bore bivalent chromatin marks, were enriched for mediators of neuronal differentiation, and were transcriptionally repressed across a panel of heterogenous neuroblastoma cell lines. Through gene set variance analysis, we developed a clinically implementable bivalent signature. In three distinct clinical cohorts, low bivalent signature was significantly and independently associated with worse clinical outcome in high-risk neuroblastoma patients. Thus, low expression of bivalent genes is a biomarker of ultra-high-risk disease and may represent a therapeutic opportunity in neuroblastoma.

5.
Epigenetics ; 17(10): 1180-1194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34689714

RESUMO

Aberrant DNA methylation is an epigenetic hallmark of malignant tumours. The DNA methylation level is regulated by not only DNA methyltransferases (DNMTs) but also Ten-Eleven Translocation (TET) family proteins. However, the exact role of TET genes in breast cancer remains controversial. Here, we uncover that the ERα-positive breast cancer patients with high TET2 mRNA expression had better overall survival rates. Consistently, knockout of TET2 promotes the tumorigenesis of ERα-positive MCF7 breast cancer cells. Mechanistically, TET2 loss leads to aberrant DNA methylation (gain of 5mC) at a large proportion of enhancers, accompanied by significant reduction in H3K4me1 and H3K27ac enrichment. By analysing the epigenetically reprogrammed enhancers, we identify oestrogen responsive element (ERE) as one of the enriched motifs of transcriptional factors. Importantly, TET2 loss impairs 17beta-oestradiol (E2)-induced transcription of the epigenetically reprogrammed EREs-associated genes through attenuating the binding of ERα. Taken together, these findings shed light on our understanding of the epigenetic mechanisms underlying the enhancer reprogramming during breast cancer pathogenesis.


Assuntos
Neoplasias da Mama , Dioxigenases , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Estradiol , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Humanos , Metiltransferases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo
6.
Biochem Biophys Res Commun ; 589: 240-246, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34929447

RESUMO

Estrogen signaling plays important roles in diverse physiological and pathophysiological processes. However, the relationship between estrogen signaling and epigenetic regulation is not fully understood. Here, we explored the effect of estrogen signaling on the expression of Ten-Eleven Translocation (TET) family genes and DNA hydroxylmethylation in estrogen receptor alpha positive (ERα+) breast cancer cells. By analyzing the RNA-seq data, we identified TET2 as an estradiol (E2)-responsive gene in ERα+ MCF7 cells. RT-qPCR and Western blot analyses confirmed that both the mRNA and protein levels of TET2 gene were upregulated in MCF7 cells by E2 treatment. ChIP-seq and qPCR analyses showed that the enrichment of ERα and H3K27ac on the upstream regulatory regions of TET2 gene was increased in MCF7 cells upon E2 treatment. Moreover, E2 treatment also led to a significant increase in the global 5-hydroxymethylcytosine (5hmC) level, while knockout of TET2 abolished such E2-induced 5hmC increase. Conversely, treatment with ICI 182780, a potent and selective estrogen receptor degrader (SERD), inhibited TET2 gene expression and down-regulated the 5hmC level in MCF7 cells. Taken together, our study identified an ERα/TET2/5hmC epigenetic pathway, which may participate in the estrogen-associated physiological and pathophysiological processes.


Assuntos
5-Metilcitosina/metabolismo , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Elementos Facilitadores Genéticos/genética , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
7.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34555356

RESUMO

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Metilação de DNA , Histona-Lisina N-Metiltransferase/química , Histonas/química , Neoplasias Pulmonares/metabolismo , Proteínas Repressoras/química , Adenocarcinoma de Pulmão/mortalidade , Animais , Biópsia , Sistemas CRISPR-Cas , Carcinogênese/genética , Progressão da Doença , Epigênese Genética , Epigenômica , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Oncogenes , Prognóstico , Transdução de Sinais , Resultado do Tratamento
8.
Cancers (Basel) ; 13(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064441

RESUMO

Activation of PD-1/PD-L1 checkpoint is a critical step for the immune evasion of malignant tumors including breast cancer. However, the epigenetic mechanism underlying the aberrant expression of PD-L1 in breast cancer cells remains poorly understood. To investigate the role of TET2 in the regulation of PD-L1 gene expression, quantitative reverse transcription PCR (RT-qPCR), Western blotting, chromatin immunoprecipitation (ChIP) assay and MeDIP/hMeDIP-qPCR were performed on MCF7 and MDA-MB-231 human breast cancer cells. Here, we reported that TET2 depletion upregulated PD-L1 gene expression in MCF7 cells. Conversely, ectopic expression of TET2 inhibited PD-L1 gene expression in MDA-MB-231 cells. Mechanistically, TET2 protein recruits histone deacetylases (HDACs) to PD-L1 gene promoter and orchestrates a repressive chromatin structure to suppress PD-L1 gene transcription, which is likely independent of DNA demethylation. Consistently, treatment with HDAC inhibitors upregulated PD-L1 gene expression in wild-type (WT) but not TET2 KO MCF7 cells. Furthermore, analysis of the CCLE and TCGA data showed a negative correlation between TET2 and PD-L1 expression in breast cancer. Taken together, our results identify a new epigenetic regulatory mechanism of PD-L1 gene transcription, linking the catalytic activity-independent role of TET2 to the anti-tumor immunity in breast cancer.

9.
Cell Rep ; 31(13): 107819, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610122

RESUMO

The RNA N6-methyladenosine (m6A) methylation is installed by the METTL3-METTL14 methyltransferase complex. This modification has critical regulatory roles in various biological processes. Here, we report that deletion of Mettl14 dramatically reduces mRNA m6A methylation in developing B cells and severely blocks B cell development in mice. Deletion of Mettl14 impairs interleukin-7 (IL-7)-induced pro-B cell proliferation and the large-pre-B-to-small-pre-B transition and causes dramatic abnormalities in gene expression programs important for B cell development. Suppression of a group of transcripts by cytoplasmic m6A reader YTHDF2 is critical to the IL-7-induced pro-B cell proliferation. In contrast, the block in the large-pre-B-to-small-pre-B transition is independent of YTHDF1 or YTHDF2 but is associated with a failure to properly upregulate key transcription factors regulating this transition. Our data highlight the important regulatory roles of the RNA m6A methylation and its reader proteins in early B cell development.


Assuntos
Adenosina/análogos & derivados , Linfócitos B/metabolismo , RNA/metabolismo , Adenosina/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Tamanho Celular , Cromatina/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Interleucina-7/metabolismo , Metilação , Metiltransferases/deficiência , Metiltransferases/metabolismo , Camundongos Knockout , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
10.
Cancer Cell ; 37(6): 834-849.e13, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442403

RESUMO

Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts. SETD5 lacks histone methyltransferase activity but scaffolds a co-repressor complex, including HDAC3 and G9a. Gene silencing by the SETD5 complex regulates known drug resistance pathways to reprogram cellular responses to MEKi. Pharmacological co-targeting of MEK1/2, HDAC3, and G9a sustains PDAC tumor growth inhibition in vivo. Our work uncovers SETD5 as a key mediator of acquired MEKi therapy resistance in PDAC and suggests a context for advancing MEKi use in the clinic.


Assuntos
Cromatina/genética , Resistencia a Medicamentos Antineoplásicos , Metiltransferases/metabolismo , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cell ; 76(1): 70-81.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31445886

RESUMO

N6-methyladenosine (m6A) modification occurs co-transcriptionally and impacts pre-mRNA processing; however, the mechanism of co-transcriptional m6A-dependent alternative splicing regulation is still poorly understood. Heterogeneous nuclear ribonucleoprotein G (hnRNPG) is an m6A reader protein that binds RNA through RRM and Arg-Gly-Gly (RGG) motifs. Here, we show that hnRNPG directly binds to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) using RGG motifs in its low-complexity region. Through interactions with the phosphorylated CTD and nascent RNA, hnRNPG associates co-transcriptionally with RNAPII and regulates alternative splicing transcriptome-wide. m6A near splice sites in nascent pre-mRNA modulates hnRNPG binding, which influences RNAPII occupancy patterns and promotes exon inclusion. Our results reveal an integrated mechanism of co-transcriptional m6A-mediated splicing regulation, in which an m6A reader protein uses RGG motifs to co-transcriptionally interact with both RNAPII and m6A-modified nascent pre-mRNA to modulate RNAPII occupancy and alternative splicing.


Assuntos
Adenosina/análogos & derivados , Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica , Adenosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Éxons , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA