Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 334: 122218, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918625

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive chronic inflammatory disease with poor clinical outcomes and ineffective drug treatment options. Eupatilin is a major component extracted from the traditional herbal medicine Artemisia asiatica Nakai. Notably, it was demonstrated to have an anti-fibrosis effect in endometrial fibrosis, vocal fold, and hepatic fibrosis. Its role and mechanism in IPF remain unclear. METHODS: This study used the TGF-ß1-induced human embryonic lung fibroblasts (MRC-5) activation, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model. Western blot, immunofluorescence staining, quantitative real time-PCR, hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to evaluate the effects of eupatilin on fibroblast activation, pulmonary fibrosis, and autophagy. The autophagosomes were observed with a transmission electron microscope (TEM). RNA sequencing was used to determine the signaling pathway and key regulator related to autophagy. RESULTS: Eupatilin significantly decreased the expression of Col1A1, fibronectin, α-SMA, and SQSTM1/p62. In contrast, it increased the expression of LC3B II/I and the number of autophagosomes in TGF-ß1 treated MRC-5, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model; it also alleviated bleomycin-induced lung fibrosis. The KEGG pathway mapping displayed that PI3K/Akt and Sestrin2 were associated with the enhanced fibrogenic process. Eupatilin suppressed the phosphorylation of PI3K/Akt/mTOR. Autophagy inhibitor 3-methyladenine (3-MA) and Akt activator SC-79 abrogated the anti-fibrotic effect of eupatilin. Sestrin2 expression was also downregulated in TGF-ß1 treated lung fibroblasts and lung tissues of the bleomycin-induced pulmonary fibrosis mice model. Furthermore, eupatilin promoted Sestrin2 expression, and the knockdown of Sestrin2 significantly aggravated the degree of fibrosis, increased the phosphorylation of PI3K/Akt/mTOR, and decreased autophagy. CONCLUSION: These findings indicate that eupatilin ameliorates pulmonary fibrosis through Sestrin2/PI3K/Akt/mTOR-dependent autophagy pathway.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Autofagia , Fibroblastos/metabolismo , Bleomicina/toxicidade
2.
Chin J Cancer Res ; 35(2): 126-139, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37180835

RESUMO

Objective: Two cycles of induction chemotherapy (IC) followed by 2 cycles of platinum-based concurrent chemoradiotherapy (CCRT) (2IC+2CCRT) for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) is widely adopted but not evidence-confirmed. This study aimed to determine the clinical value of 2IC+2CCRT regarding efficacy, toxicity and cost-effectiveness. Methods: This real-world study from two epidemic centers used propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) analyses. The enrolled patients were divided into three groups based on treatment modality: Group A (2IC+2CCRT), Group B (3IC+2CCRT or 2IC+3CCRT) and Group C (3IC+3CCRT). Long-term survival, acute toxicities and cost-effectiveness were compared among the groups. We developed a prognostic model dividing the population into high- and low-risk cohorts, and survivals including overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRRFS) were compared among the three groups according to certain risk stratifications. Results: Of 4,042 patients, 1,175 were enrolled, with 660, 419, and 96 included in Groups A, B and C, respectively. Five-year survivals were similar among the three groups after PSM and confirmed by IPTW. Grade 3-4 neutropenia and leukocytopenia were significantly higher in Groups C and B than in Group A (52.1% vs. 41.5% vs. 25.2%; 41.7% vs. 32.7% vs. 25.0%) as were grade 3-4 nausea/vomiting and oral mucositis (29.2% vs. 15.0% vs. 6.1%; 32.3% vs. 25.3% vs. 18.0%). Cost-effective analysis suggested that 2IC+2CCRT was the least expensive, while the health benefits were similar to those of the other groups. Further exploration showed that 2IC+2CCRT tended to be associated with a shorter PFS in high-risk patients, while 3IC+3CCRT potentially contributed to poor PFS in low-risk individuals, mainly reflected by LRRFS. Conclusions: In LA-NPC patients, 2IC+2CCRT was the optimal choice regarding efficacy, toxicity and cost-effectiveness; however, 2IC+2CCRT and 3IC+3CCRT probably shortened LRRFS in high- and low-risk populations, respectively.

3.
Exp Gerontol ; 172: 112085, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623738

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease with limited therapeutic options. Aspirin can alleviate liver, kidney, and cardiac fibrosis. However, its role in lung fibrosis is unclear. This study aims to investigate the effects of aspirin on lung fibroblast differentiation and pulmonary fibrosis. TGF-ß1-induced human embryonic lung fibroblasts, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mouse model were used in this study. The results showed that aspirin significantly decreased the expression of Collagen 1A1, Fibronectin, Alpha-smooth muscle actin, and equestosome1, and increased the ratio of light chain 3 beta II/I and the number of autophagosome in vivo and in vitro; reduced bleomycin-induced lung fibrosis. Aspirin also decreased the ratios of phosphorylated phosphatidylinositol 3 kinase (p-PI3K)/PI3K, protein kinase B (p-AKT)/AKT, and mechanistic target of rapamycin (p-mTOR)/mTOR in vitro. Autophagy inhibitor 3-methyladenine, bafilomycin-A1, and AKT activator SC-79 abrogated the effects of aspirin. These findings indicate that aspirin ameliorates pulmonary fibrosis through a PI3K/AKT/mTOR-dependent autophagy pathway.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Aspirina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Fibroblastos , Bleomicina/metabolismo , Bleomicina/farmacologia
4.
iScience ; 25(9): 104841, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36034225

RESUMO

In nasopharyngeal carcinoma, deep-learning extracted signatures on MR images might be correlated with survival. In this study, we sought to develop an individualizing model using deep-learning MRI signatures and clinical data to predict survival and to estimate the benefit of induction chemotherapy on survivals of patients with nasopharyngeal carcinoma. Two thousand ninety-seven patients from three independent hospitals were identified and randomly assigned. When the deep-learning signatures of the primary tumor and clinically involved gross cervical lymph nodes extracted from MR images were added to the clinical data and TNM staging for the progression-free survival prediction model, the combined model achieved better prediction performance. Its application is among patients deciding on treatment regimens. Under the same conditions, with the increasing MRI signatures, the survival benefits achieved by induction chemotherapy are increased. In nasopharyngeal carcinoma, these prediction models are the first to provide an individualized estimation of survivals and model the benefit of induction chemotherapy on survivals.

5.
Theranostics ; 12(5): 2133-2149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265203

RESUMO

Objective: Ultraviolet B (UVB) is an important trigger of skin inflammation and lupus with leukocyte recruitment to inflamed skin. We recently reported the involvement of neutrophil NETosis in UVB-induced skin inflammation, and that NETotic nuclear envelope rupture is driven by PKCα-mediated nuclear lamin B disassembly. To address the role of Actin cytoskeleton in NETosis, we investigated the effects of Rho kinase (ROCK) and its downstream actomyosin cytoskeletal networks on PKCα nuclear translocation and NET formation, as well as their involvement in UVB-induced skin inflammation. Methods: We studied the dynamic changes of ROCK and actomyosin cytoskeletal networks during NETosis induction and their involvement in PKCα nuclear translocation. Using mice with hematopoietic-specific ROCK1 deficiency, we investigated the effects of ROCK1 deficiency on NETosis, and its involvement in UVB-induced skin inflammation. Results: Our time course studies demonstrated the dynamic changes of actin polymerization and ROCK activation, support the role of actin cytoskeleton in nuclear translocation of cytosolic PKCα in early stage of NETosis induction. Inhibition of actin polymerization or key molecules of the ROCK/MLCK/myosin pathway decreased PKCα nuclear translocation and NET formation. Genetic deficiency of ROCK1, inhibited NETosis ex vivo and in vivo, decreased extracellular display of NET-associated IL-17A, TNFα, IFNγ, and IFNα in inflamed skin, which were correlated with the ameliorated skin inflammation in UVB-irradiated mice with hematopoietic-specific ROCK1 deficiency. Conclusions: ROCK regulated NETosis through modulation of PKCα nuclear translocation via actomyosin cytoskeletal networks in neutrophils. ROCK1 deficiency ameliorated UVB-induced skin inflammation by attenuation of NETosis and NET-associated cytokines.


Assuntos
Neutrófilos , Proteína Quinase C-alfa , Actinas/metabolismo , Actomiosina/metabolismo , Actomiosina/farmacologia , Animais , Inflamação/metabolismo , Camundongos , Neutrófilos/metabolismo , Quinases Associadas a rho/metabolismo
7.
Ther Adv Chronic Dis ; 10: 2040622319862697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367296

RESUMO

Fibrosis usually results from dysregulated wound repair and is characterized by excessive scar tissue. It is a complex process with unclear mechanisms. Accumulating evidence indicates that epigenetic alterations, including histone acetylation, play a pivotal role in this process. Histone acetylation is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are enzymes that remove the acetyl groups from both histone and nonhistone proteins. Aberrant HDAC activities are observed in fibrotic diseases, including cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that block HDAC functions. HDACIs have been studied extensively in a variety of tumors. Currently, there are four HDACIs approved by the US Food and Drug Administration for cancer treatment yet none for fibrotic diseases. Emerging evidence from in vitro and in vivo preclinical studies has presented beneficial effects of HDACIs in preventing or reversing fibrogenesis. In this review, we summarize the latest findings of the roles of HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the potential applications of HDACIs in these two fibrotic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA