Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMJ Open Respir Res ; 10(1)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38568728

RESUMO

BACKGROUND: Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis. METHODS: We investigated the location and function of collagen XIII in the lung to understand the origin of pulmonary symptoms in human CMS19 patients. Additionally, we performed immunostainings on idiopathic pulmonary fibrosis (IPF) samples (N=5) and both normal and fibrotic mouse lung. To study whether the lack of collagen XIII predisposes to restrictive lung disease, we exposed Col13a1-modified mice to bleomycin-induced pulmonary fibrosis. RESULTS: Apparently normal alveolar septum sections of IPF patients' lungs stained faintly for collagen XIII, and its expression was pinpointed to the septal fibroblasts in the mouse lung. Lung capacity was increased in mice lacking collagen XIII by over 10%. In IPF samples, collagen XIII was expressed by basal epithelial cells, hyperplastic alveolar epithelial cells and stromal cells in fibrotic areas, but the development of pulmonary fibrosis was unaffected in collagen XIII-deficient mice. CONCLUSIONS: Changes in mouse lung function appear to represent a myasthenic manifestation of collagen XIII deficiency. We suggest that respiratory muscle myasthenia is the primary cause of the breathing problems suffered by CMS19 patients in addition to skeletal deformities. Induction of collagen XIII expression in the IPF patients' lungs warrants further studies to reveal collagen XIII-dependent disease mechanisms.


Assuntos
Fibrose Pulmonar Idiopática , Fenômenos Fisiológicos Respiratórios , Humanos , Animais , Camundongos , Dispneia , Colágeno , Pulmão
2.
Front Oncol ; 12: 981009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003785

RESUMO

Integrin α11ß1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11-/- ) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFß1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11ß1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11ß1 in skin tumorigenesis.

3.
J Biol Chem ; 298(4): 101787, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247391

RESUMO

Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor ß (TGF-ß), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-ß, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.


Assuntos
Alopecia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Alopecia/enzimologia , Alopecia/genética , Animais , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Oxigênio/metabolismo , Fator de Crescimento Transformador beta
4.
Angiogenesis ; 25(2): 259-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997404

RESUMO

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.


Assuntos
Hipertensão Pulmonar , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Fibrose , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Miócitos de Músculo Liso/patologia , Prolil Hidroxilases/metabolismo
5.
PLoS One ; 15(5): e0233261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413092

RESUMO

The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Lesões dos Tecidos Moles/fisiopatologia , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Sci Rep ; 7(1): 17220, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222481

RESUMO

Hypoxia-inducible factor 1α (HIF1α) induces the expression of several hundred genes in hypoxia aiming at restoration of oxygen homeostasis. HIF prolyl-4-hydroxylases (HIF-P4Hs) regulate the stability of HIF1α in an oxygen-dependent manner. Hypoxia is a common feature in inflammation and cancer and the HIF pathway is closely linked with the inflammatory NF-κB and tumor suppressor p53 pathways. Here we show that genetic inactivation or chemical inhibition of HIF-P4H-1 leads to downregulation of proinflammatory genes, while proapoptotic genes are upregulated. HIF-P4H-1 inactivation reduces the inflammatory response under LPS stimulus in vitro and in an acute skin inflammation model in vivo. Furthermore, HIF-P4H-1 inactivation increases p53 activity and stability and hydroxylation of proline 142 in p53 has an important role in this regulation. Altogether, our data suggest that HIF-P4H-1 inhibition may be a promising therapeutic candidate for inflammatory diseases and cancer, enhancing the reciprocal negative regulation of the NF-κB and p53 pathways.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Regulação para Baixo , Inativação Gênica , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Proteólise
7.
Cell Rep ; 19(4): 774-784, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445728

RESUMO

Surgery remains the most successful curative treatment for cancer. However, some patients with early-stage disease who undergo surgery eventually succumb to distant metastasis. Here, we show that in response to surgery, the lungs become more vulnerable to metastasis due to extracellular matrix remodeling. Mice that undergo surgery or that are preconditioned with plasma from donor mice that underwent surgery succumb to lung metastases earlier than controls. Increased lysyl oxidase (LOX) activity and expression, fibrillary collagen crosslinking, and focal adhesion signaling contribute to this effect, with the hypoxic surgical site serving as the source of LOX. Furthermore, the lungs of recipient mice injected with plasma from post-surgical colorectal cancer patients are more prone to metastatic seeding than mice injected with baseline plasma. Downregulation of LOX activity or levels reduces lung metastasis after surgery and increases survival, highlighting the potential of LOX inhibition in reducing the risk of metastasis following surgery.


Assuntos
Neoplasias Colorretais/cirurgia , Neoplasias Pulmonares/secundário , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Adesões Focais/metabolismo , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteína-Lisina 6-Oxidase/sangue , Proteína-Lisina 6-Oxidase/imunologia , Risco , Transdução de Sinais , Transplante Homólogo
8.
Mol Cell Biol ; 31(13): 2683-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536655

RESUMO

The lysyl oxidase gene (LOX) inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162-amino-acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibits Erk signaling, motility, and tumor formation in a breast cancer xenograft model; however, its mechanism of action is largely unknown. Here, a copurification-mass spectrometry approach was taken using ectopically expressed LOX-PP in HEK293T cells and the heat shock/chaperone protein Hsp70 identified. Hsp70 interaction with LOX-PP was confirmed using coimmunoprecipitation of intracellularly and bacterially expressed and endogenous proteins. The interaction was mapped to the Hsp70 peptide-binding domain and to LOX-PP amino acids 26 to 100. LOX-PP association reduced Hsp70 chaperone activities of protein refolding and survival after heat shock. LOX-PP interacted with the Hsp70 chaperoned protein c-Raf. With the use of ectopic expression of LOX-PP wild-type and deletion proteins, small interfering RNA (siRNA) knockdown, and Lox(-/-) mouse embryo fibroblasts, LOX-PP interaction with c-Raf was shown to decrease downstream activation of MEK and NF-κB, migration, and anchorage-independent growth and reduce its mitochondrial localization. Thus, the interaction of LOX-PP with Hsp70 and c-Raf inhibits a critical intermediate in Ras-induced MEK signaling and plays an important role in the function of this tumor suppressor.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas ras/antagonistas & inibidores , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Mitocôndrias/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteína-Lisina 6-Oxidase/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética
9.
J Biol Chem ; 285(18): 13646-57, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20185832

RESUMO

Hypoxia-inducible factor (HIF) has a pivotal role in oxygen homeostasis and cardioprotection mediated by ischemic preconditioning. Its stability is regulated by HIF prolyl 4-hydroxylases (HIF-P4Hs), the inhibition of which is regarded as a promising strategy for treating diseases such as anemia and ischemia. We generated a viable Hif-p4h-2 hypomorph mouse line (Hif-p4h-2(gt/gt)) that expresses decreased amounts of wild-type Hif-p4h-2 mRNA: 8% in the heart; 15% in the skeletal muscle; 34-47% in the kidney, spleen, lung, and bladder; 60% in the brain; and 85% in the liver. These mice have no polycythemia and show no signs of the dilated cardiomyopathy or hyperactive angiogenesis observed in mice with broad spectrum conditional Hif-p4h-2 inactivation. We focused here on the effects of chronic Hif-p4h-2 deficiency in the heart. Hif-1 and Hif-2 were stabilized, and the mRNA levels of glucose transporter-1, several enzymes of glycolysis, pyruvate dehydrogenase kinase 1, angiopoietin-2, and adrenomedullin were increased in the Hif-p4h-2(gt/gt) hearts. When isolated Hif-p4h-2(gt/gt) hearts were subjected to ischemia-reperfusion, the recovery of mechanical function and coronary flow rate was significantly better than in wild type, while cumulative release of lactate dehydrogenase reflecting the infarct size was reduced. The preischemic amount of lactate was increased, and the ischemic versus preischemic [CrP]/[Cr] and [ATP] remained at higher levels in Hif-p4h-2(gt/gt) hearts, indicating enhanced glycolysis and an improved cellular energy state. Our data suggest that chronic stabilization of Hif-1alpha and Hif-2alpha by genetic knockdown of Hif-p4h-2 promotes cardioprotection by induction of many genes involved in glucose metabolism, cardiac function, and blood pressure.


Assuntos
Dioxigenases/metabolismo , Glucose/metabolismo , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Doença Aguda , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Circulação Coronária/genética , Dioxigenases/genética , Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Especificidade de Órgãos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
10.
Histol Histopathol ; 24(5): 651-60, 2009 05.
Artigo em Inglês | MEDLINE | ID: mdl-19283672

RESUMO

Lysyl oxidase (LOX) catalyzes the oxidation of the side chain of a peptidyl lysine converting specific lysine and hydroxylysine residues of alpha-aminoadipic-delta-semialdehydes, which form covalent crosslinks in collagens and elastin. Five different but closely related lysyl oxidase isoenzymes have been identified to date, and they seem to have overlapping functions in many tissues. Modification of the extracellular matrix by lysyl oxidases has been shown to be a critical contributor to the development of various organs and certain pathological conditions.


Assuntos
Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/etiologia , Sistema Cardiovascular/enzimologia , Sistema Cardiovascular/crescimento & desenvolvimento , Humanos , Mamíferos , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/etiologia , Proteína-Lisina 6-Oxidase/genética , Sistema Respiratório/enzimologia , Sistema Respiratório/crescimento & desenvolvimento
11.
J Biol Chem ; 283(35): 24103-17, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18586678

RESUMO

Lysyl oxidase (LOX) is a potent chemokine inducing the migration of varied cell types. Here we demonstrate that inhibition of LOX activity by beta-aminopropionitrile (BAPN) in cultured rat aortic smooth muscle cells (SMCs) reduced the chemotactic response and sensitivity of these cells toward LOX and toward PDGF-BB. The chemotactic activity of PDGF-BB was significantly enhanced in the presence of a non-chemotactic concentration of LOX. We considered the possibility that extracellular LOX may oxidize cell surface proteins, including the PDGF receptor-beta (PDGFR-beta), to affect PDGF-BB-induced chemotaxis. Plasma membranes purified from control SMC contained oxidized PDGFR-beta. The oxidation of this receptor and other membrane proteins was largely prevented in cells preincubated with BAPN. Addition of purified LOX to these cells restored the profile of oxidized proteins toward that of control cells. The high affinity and capacity for the binding of PDGF-BB by cells containing oxidized PDGFR-beta was diminished by approximately 2-fold when compared with cells in which oxidation by LOX was prevented by BAPN. Phosphorylated members of the PDGFR-beta-dependent signal transduction pathway, including PDGFR-beta, SHP2, AKT1, and ERK1/ERK2 (p44/42 MAPK), turned over faster in BAPN-treated than in control SMCs. LOX knock-out mouse embryonic fibroblasts mirrored the effect obtained with SMCs treated with BAPN. These novel findings suggest that LOX activity is essential to generate optimal chemotactic sensitivity of cells to chemoattractants by oxidizing specific cell surface proteins, such as PDGFR-beta.


Assuntos
Aorta/enzimologia , Quimiotaxia/fisiologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteína-Lisina 6-Oxidase/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Aminopropionitrilo/farmacologia , Animais , Aorta/citologia , Becaplermina , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Oxirredução , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-sis , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
12.
Cancer Res ; 67(9): 4123-9, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17456585

RESUMO

Promoter hypermethylation is one of the common mechanisms leading to gene silencing in various human cancers. Using a combination of pharmacologic unmasking and microarray techniques, we identified 59 candidate hypermethylated genes, including LOXL1, a lysyl oxidase-like gene, in human bladder cancer cells. We further showed that LOXL1 and LOXL4 are commonly silenced genes in human bladder cancer cells, and this silence is predominantly related to promoter methylation. We also found LOXL1 and LOXL4 gene methylation and loss of expression in primary bladder tumors. In addition, somatic mutations were identified in LOXL4, but not in LOXL1 in bladder cancer. Moreover, reintroduction of LOXL1 and LOXL4 genes into human bladder cancer cells leads to a decrease of colony formation ability. Further studies indicated that the overexpression of LOXL1 and LOXL4 could antagonize Ras in activating the extracellular signal-regulated kinase (ERK) signaling pathway. Thus, our current study suggests for the first time that lysyl oxidase-like genes can act as tumor suppressor genes and exert their functions through the inhibition of the Ras/ERK signaling pathway in human bladder cancer.


Assuntos
Aminoácido Oxirredutases/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias da Bexiga Urinária/genética , Proteínas ras/antagonistas & inibidores , Aminoácido Oxirredutases/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Citoplasma/enzimologia , Metilação de DNA/efeitos dos fármacos , Decitabina , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Mutação , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Proteína-Lisina 6-Oxidase , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA