Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 722656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557163

RESUMO

Context: Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective: Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design: Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients: Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results: Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. Conclusions: The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Células Sanguíneas/metabolismo , Metaboloma , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Neoplasias das Glândulas Suprarrenais/sangue , Neoplasias das Glândulas Suprarrenais/metabolismo , Adulto , Análise Química do Sangue/métodos , Estudos de Casos e Controles , Catecolaminas/metabolismo , Cromatografia Líquida , Feminino , Alemanha , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Paraganglioma/sangue , Paraganglioma/metabolismo , Feocromocitoma/sangue , Feocromocitoma/metabolismo , Espectrometria de Massas em Tandem
2.
Inorg Chem ; 59(17): 11889-11893, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32846087

RESUMO

The chemical properties of actinide materials are often predefined and described based on the data available for isostructural species. This is the case for potassium plutonyl (PuVI) carbonate, K4PuVIO2(CO3)3(cr), a complex relevant for nuclear technology and the environment, of which the crystallographic and thermodynamic properties of which are still lacking. We report here the synthesis and characterization of PuVI achieved by single-crystal X-ray diffraction analysis and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure at the Pu M4-edge coupled with electronic structure calculations. The crystallographic properties of PuVI are compared with isostructural uranium (U) and neptunium (Np) compounds. Actinyl (AnVI) axial bond lengths, [O-AnVI-O]2+, are correlated between solid, K4AnVIO2(CO3)3(cr), and aqueous, [AnVIO2(CO3)3]4-(aq) species for the UVI-NpVI-PuVI series. The spectroscopic data are compared to KPuVO2CO3(cr) and PuIVO2(cr) to tackle the trend in the electronic structure of PuVI regarding the oxidation state changes and local structural modifications around the Pu atom.

3.
Inorg Chem ; 57(21): 13318-13329, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30335372

RESUMO

The coordination chemistry of the diimine ligands, 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen), with d- and f-block metals has been extensively explored during the last century to yield many technological and industrial applications. Despite this long history, the chemistry of these diimine ligands in heterometallic systems containing multiple metals is poorly understood even to date. This study reports, for the first time, a systematic investigation into the coordination behavior bipy/phen in the heterometallic iron-uranium system covering all the combinations of the possible redox couples (i.e., Fe2+/Fe3+ and U4+/U6+) that are potentially relevant to the actual engineered or environmental systems. In total, 11 new compounds of pure uranium and heterometallic Fe-U complexes were successfully synthesized and structurally characterized. The synthesized compounds show an intriguing structural variety in terms of the nuclearity of the metal center (mono- and dinuclear arrangements for both Fe and U) and the manner of crystal packing based on different intra- and intermolecular interactions (e.g., π···π interactions, hydrogen bonding, etc.). The results also highlight the similarity of the fundamental coordination properties of bipy and phen toward Fe and U, regardless of the oxidation states of the metals, as well as the striking dissimilarity in their chemical behavior upon crystal packing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA