Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904048

RESUMO

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

2.
J Med Chem ; 66(20): 14278-14302, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819647

RESUMO

Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Isoformas de Proteínas , Fosfatidilinositóis
4.
Science ; 380(6640): 93-101, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926954

RESUMO

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Assuntos
Antineoplásicos , Apoptose , Processamento de Proteína Pós-Traducional , Proteômica , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Humanos
5.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109648

RESUMO

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Fosfatos de Fosfatidilinositol/metabolismo
6.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200994

RESUMO

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Assuntos
Inibidores de Histona Desacetilases , Isoenzimas , Humanos , Vorinostat , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Histona Desacetilases/química , Poliaminas/farmacologia , Zinco , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
7.
Anal Chem ; 94(20): 7181-7190, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549156

RESUMO

The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry. It is a standard workflow in proteomics ranging from single-cell to high-throughput proteomics. Particularly for TMT, increasing the number of confidently identified spectra is highly desirable as it provides identification and quantification information with every spectrum. Here, we report on the generation of an extensive resource of synthetic TMT-labeled peptides as part of the ProteomeTools project and present the extension of the deep learning model Prosit to accurately predict the retention time and fragment ion intensities of TMT-labeled peptides with high accuracy. Prosit-TMT supports CID and HCD fragmentation and ion trap and Orbitrap mass analyzers in a single model. Reanalysis of published TMT data sets show that this single model extracts substantial additional information. Applying Prosit-TMT, we discovered that the expression of many proteins in human breast milk follows a distinct daily cycle which may prime the newborn for nutritional or environmental cues.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem , Humanos , Recém-Nascido , Peptídeos/química , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
8.
Nat Chem Biol ; 18(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484434

RESUMO

Drugs that target histone deacetylase (HDAC) entered the pharmacopoeia in the 2000s. However, some enigmatic phenotypes suggest off-target engagement. Here, we developed a quantitative chemical proteomics assay using immobilized HDAC inhibitors and mass spectrometry that we deployed to establish the target landscape of 53 drugs. The assay covers 9 of the 11 human zinc-dependent HDACs, questions the reported selectivity of some widely-used molecules (notably for HDAC6) and delineates how the composition of HDAC complexes influences drug potency. Unexpectedly, metallo-ß-lactamase domain-containing protein 2 (MBLAC2) featured as a frequent off-target of hydroxamate drugs. This poorly characterized palmitoyl-CoA hydrolase is inhibited by 24 HDAC inhibitors at low nanomolar potency. MBLAC2 enzymatic inhibition and knockdown led to the accumulation of extracellular vesicles. Given the importance of extracellular vesicle biology in neurological diseases and cancer, this HDAC-independent drug effect may qualify MBLAC2 as a target for drug discovery.


Assuntos
Histona Desacetilases , Neoplasias , Descoberta de Drogas , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química
9.
Angew Chem Int Ed Engl ; 58(52): 18948-18956, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31671244

RESUMO

Linear modules equipped with two terminal hydroxamic acid groups act as the building block of diverse two-dimensional supramolecular motifs and patterns with room-temperature stability on the close-packed single-crystal surfaces of silver and gold, revealing a complex self-assembly scenario. By combining multiple investigation techniques (scanning tunneling microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations), we analyze the characteristics of the ordered assemblies which range from close-packed structures to polyporous networks featuring an exceptionally extended primitive unit cell with a side length exceeding 7 nm. The polyporous network shows potential for hosting and promoting the formation of chiral supramolecules, whereas a transition from 1D chiral randomness to an ordered racemate is discovered in a different porous phase. We correlate the observed structural changes to the adaptivity of the building block and surface-induced changes in the chemical state of the hydroxamic acid functional group.

10.
ACS Chem Biol ; 14(4): 655-664, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30901187

RESUMO

Chemical proteomic approaches utilizing immobilized, broad-selective kinase inhibitors (Kinobeads) have proven valuable for the elucidation of a compound's target profile under close-to-physiological conditions and often revealed potentially synergistic or toxic off-targets. Current Kinobeads enrich more than 300 native protein kinases from cell line or tissue lysates but do not systematically cover phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related kinases (PIKKs). Some PIKKs and PI3Ks show aberrant activation in many human diseases and are indeed validated drug targets. Here, we report the development of a novel version of Kinobeads that extends kinome coverage to these proteins. This is achieved by inclusion of two affinity probes derived from the clinical PI3K/MTOR inhibitors Omipalisib and BGT226. We demonstrate the utility of the new affinity matrix by the profiling of 13 clinical and preclinical PIKK/PI3K inhibitors. The large discrepancies between the PI3K affinity values obtained and reported results from recombinant assays led us to perform a phosphoproteomic experiment showing that the chemoproteomic assay is the better approximation of PI3K inhibitor action in cellulo. The results further show that NVP-BEZ235 is not a PI3K inhibitor. Surprisingly, the designated ATM inhibitor CP466722 was found to bind strongly to ALK2, identifying a new chemotype for drug discovery to treat fibrodysplasia ossificans progressiva.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
ChemMedChem ; 13(16): 1629-1633, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29928781

RESUMO

Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.


Assuntos
Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptor EphA2/metabolismo , Receptor EphB4/metabolismo , Cristalografia por Raios X , Humanos , Isomerismo , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor EphA2/química , Receptor EphB4/química
13.
Mol Cell Proteomics ; 17(9): 1850-1863, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29848782

RESUMO

The analysis of the post-translational modification (PTM) state of proteins using mass spectrometry-based bottom-up proteomic workflows has evolved into a powerful tool for the study of cellular regulatory events that are not directly encoded at the genome level. Besides frequently detected modifications such as phosphorylation, acetylation and ubiquitination, many low abundant or less frequently detected PTMs are known or postulated to serve important regulatory functions. To more broadly understand the LC-MS/MS characteristics of PTMs, we synthesized and analyzed ∼5,000 peptides representing 21 different naturally occurring modifications of lysine, arginine, proline and tyrosine side chains and their unmodified counterparts. The analysis identified changes in retention times, shifts of precursor charge states and differences in search engine scores between modifications. PTM-dependent changes in the fragmentation behavior were evaluated using eleven different fragmentation modes or collision energies. We also systematically investigated the formation of diagnostic ions or neutral losses for all PTMs, confirming 10 known and identifying 5 novel diagnostic ions for lysine modifications. To demonstrate the value of including diagnostic ions in database searching, we reprocessed a public data set of lysine crotonylation and showed that considering the diagnostic ions increases confidence in the identification of the modified peptides. To our knowledge, this constitutes the first broad and systematic analysis of the LC-MS/MS properties of common and rare PTMs using synthetic peptides, leading to direct applicable utility for bottom-up proteomic experiments.


Assuntos
Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Cromatografia de Fase Reversa , Bases de Dados de Proteínas , Íons
14.
Science ; 358(6367)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191878

RESUMO

Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
15.
J Agric Food Chem ; 65(42): 9275-9286, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28981267

RESUMO

To investigate the role of perireceptor events in inter-individual variability in salt taste sensitivity, 31 volunteers were monitored in their detection functions for sodium chloride (NaCl) and classified into sensitive (0.6-1.7 mmol/L), medium-sensitive (1.8-6.9 mmol/L), and nonsensitive (7.0-11.2 mmol/L) subjects. Chemosensory intervention of NaCl-sensitive (S+) and nonsensitive (S-) panellists with potassium chloride, ammonium chloride, and sodium gluconate showed the salt taste sensitivity to be specific for NaCl. As no significant differences were found between S+ and S- subjects in salivary sodium and protein content, salivary proteome differences and their stimulus-induced dynamic changes were analyzed by tryptic digestion, iTRAQ labeling, and liquid chromatography-tandem mass spectrometry analysis. Differences in the salivary proteome between S+ and S- subjects were found primarily in resting saliva and were largely independent of the dynamic alterations observed upon salt stimulation. Gene ontology enrichment analysis of key proteins, i.e., immunoglobulin heavy constant y1, myeloblastin, cathepsin G, and kallikrein, revealed significantly increased serine-type endopeptidase activity for the S+ group, while the S- group exhibited augmented cysteine-type endopeptidase inhibitor activity by increased abundances in lipocalin-1 and cystatin-D, -S, and -SN, respectively. As proteases have been suggested to facilitate transepithelial sodium transport by cleaving the y-subunit of the epithelial sodium channel (ENaC) and protease inhibitors have been shown to reduce ENaC-mediated sodium transport, the differentially modulated proteolytic activity patterns observed in vivo for S+ and S- subjects show evidence of them playing a crucial role in affecting human NaCl sensitivity.


Assuntos
Proteoma/química , Saliva/metabolismo , Cloreto de Sódio/metabolismo , Paladar , Adulto , Feminino , Humanos , Masculino , Proteoma/metabolismo , Saliva/química , Adulto Jovem
16.
ChemMedChem ; 12(12): 999-1011, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28544567

RESUMO

The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Receptor EphA2/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor EphA2/metabolismo , Relação Estrutura-Atividade
17.
J Agric Food Chem ; 65(10): 2147-2154, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28225606

RESUMO

The interaction of astringent substances with salivary proteins, which results in protein precipitation, is considered a key event in the molecular mechanism underlying the oral sensation of puckering astringency. As the chemical nature of orally active astringents is diverse and the knowledge of their interactions with salivary proteins rather fragmentary, human whole saliva samples were incubated with suprathreshold and isointensity solutions of the astringent polyphenol (-)-epigallocatechin gallate, the multivalent metal salt iron(III) sulfate, the amino-functionalized polysaccharide chitosan, and the basic protein lysozyme. After separation of the precipitated proteins, the proteins affected by the astringents were identified and relatively quantified for the first time by complementary bottom-up and top-down mass spectrometry-based proteomics approaches. Major salivary target proteins, which may be involved in astringency perception, are reported here for each astringent stimulus.


Assuntos
Adstringentes/metabolismo , Boca/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adulto , Adstringentes/química , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Masculino , Espectrometria de Massas , Proteômica , Proteínas e Peptídeos Salivares/química , Paladar , Adulto Jovem
18.
Immunity ; 45(4): 761-773, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27692612

RESUMO

Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K+ efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K+ efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant.


Assuntos
Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , RNA Nuclear Pequeno/farmacologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , Quinases Relacionadas a NIMA/metabolismo , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 7 Toll-Like/metabolismo
19.
ACS Chem Biol ; 11(12): 3400-3411, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27768280

RESUMO

The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/química , Receptor EphA2/química
20.
ACS Chem Biol ; 11(5): 1245-54, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26863403

RESUMO

Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors.


Assuntos
Ferroquelatase/antagonistas & inibidores , Ferroquelatase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Benzocicloeptenos/farmacologia , Linhagem Celular Tumoral , Ferroquelatase/química , Heme/metabolismo , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Proteômica , Pirazinas/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA