Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103204, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38810421

RESUMO

The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.


Assuntos
Senescência Celular , Fibroblastos , Regulação da Expressão Gênica , Heme Oxigenase-1 , Ferro , Tropoelastina , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Tropoelastina/metabolismo , Tropoelastina/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Aging (Albany NY) ; 15(23): 13581-13592, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095616

RESUMO

Smoking is the main risk factor for many lung diseases including chronic obstructive pulmonary disease. Cigarette smoke (CS) contains carcinogenic and reactive oxygen species that favor DNA mutations and perturb the homeostasis and environment of cells. CS induces lung cell senescence resulting in a stable proliferation arrest and a senescence-associated secretory phenotype. It was recently reported that senescent cell accumulation promotes several lung diseases. In this study, we performed a chemical screen, using an FDA-approved drug library, to identify compounds selectively promoting the death of CS-induced senescent lung cells. Aside from the well-known senolytic, ABT-263, we identified other potentially new senescence-eliminating compounds, including a new class of molecules, the dihydropyridine family of calcium voltage-gated channel (CaV) blockers. Among these blockers, Benidipine, decreased senescent lung cells and ameliorates lung emphysema in a mouse model. The dihydropyridine family of CaV blockers thus constitutes a new class of senolytics that could improve lung diseases. Hence, our work paves the way for further studies on the senolytic activity of CaV blockers in different senescence contexts and age-related diseases.


Assuntos
Fumar Cigarros , Di-Hidropiridinas , Enfisema , Enfisema Pulmonar , Camundongos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/metabolismo , Enfisema/metabolismo , Senescência Celular
3.
Mol Biomed ; 4(1): 4, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739330

RESUMO

Pancreatic cancer is one of the deadliest cancers owing to its late diagnosis and of the strong resistance to available treatments. Despite a better understanding of the disease in the last two decades, no significant improvement in patient care has been made. Senescent cells are characterized by a stable proliferation arrest and some resistance to cell death. Increasing evidence suggests that multiple lines of antitumor therapy can induce a senescent-like phenotype in cancer cells, which may participate in treatment resistance. In this study, we describe that gemcitabine, a clinically-used drug against pancreatic cancer, induces a senescent-like phenotype in highly chemoresistant pancreatic cancer cells in vitro and in xenografted tumors in vivo. The use of ABT-263, a well-described senolytic compound targeting Bcl2 anti-apoptotic proteins, killed pancreatic gemcitabine-treated senescent-like cancer cells in vitro. In vivo, the combination of gemcitabine and ABT-263 decreased tumor growth, whereas their individual administration had no effect. Together these data highlight the possibility of improving the efficacy of conventional chemotherapies against pancreatic cancer by eliminating senescent-like cancer cells through senolytic intervention. Further studies testing different senolytics or their combination with available treatments will be necessary to optimize preclinical data in mouse models before transferring these findings to clinical trials.

4.
PLoS One ; 17(10): e0272097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194565

RESUMO

While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.


Assuntos
Axônios , Piruvato Quinase , Trifosfato de Adenosina/metabolismo , Animais , Axônios/metabolismo , Glucose/metabolismo , Glicólise , Lactato Desidrogenases , Lactatos/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Oxigênio/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/patologia
5.
Cancer Lett ; 546: 215850, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926818

RESUMO

Oncogenic stress-induced senescence initially inhibits tumor initiation by blocking proliferation and by attracting immune cells to clear potentially harmful cells. If these cells are not eliminated they may resume proliferation upon loss-of-tumor suppressors, and be at risk of transformation. During tumor formation, depending on the sequence of events of gain-of-oncogenes and/or loss-of-tumor suppressors, cancer cells may emerge from senescent cells. Here, we show that these transformed cells after senescence (TS) display more aggressive tumorigenic features, with a greater capacity to migrate and a higher resistance to anti-tumoral drugs than cells having undergone transformation without senescence. Bulk transcriptomic analysis and single cell RNA sequencing revealed a signature unique to TS cells. A score of this signature was then generated and a high score was correlated with decreased survival of patients with lung adenocarcinoma, head-neck squamous cell carcinoma, adrenocortical carcinoma, liver hepatocellular carcinoma, skin cutaneous melanoma and low-grade glioma. Together, these findings strongly support that cancer cells arising from senescent cells are more dangerous, and that a molecular signature of these cells may be of prognostic value for some human cancers. It also raises questions about modeling human tumors, using cells or mice, without regards to the sequence of events leading to transformation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutâneas , Animais , Senescência Celular , Humanos , Camundongos , Fenótipo , Proteína Supressora de Tumor p53 , Melanoma Maligno Cutâneo
6.
Aging Cell ; 21(7): e13632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653631

RESUMO

Cellular senescence is characterized by a stable proliferation arrest in response to stresses and the acquisition of a senescence-associated secretory phenotype, called SASP, composed of numerous factors including pro-inflammatory molecules, proteases, and growth factors. The SASP affects the environment of senescent cells, especially during aging, by inducing and modulating various phenotypes such as paracrine senescence, immune cell activity, and extracellular matrix deposition and organization, which critically impact various pathophysiological situations, including fibrosis and cancer. Here, we uncover a novel paracrine effect of the SASP: the neuroendocrine transdifferentiation (NED) of some epithelial cancer cells, evidenced both in the breast and prostate. Mechanistically, this effect is mediated by NF-κB-dependent SASP factors, and leads to an increase in intracellular Ca2+ levels. Consistently, buffering Ca2+ by overexpressing the CALB1 buffering protein partly reverts SASP-induced NED, suggesting that the SASP promotes NED through a SASP-induced Ca2+ signaling. Human breast cancer dataset analyses support that NED occurs mainly in p53 WT tumors and in older patients, in line with a role of senescent cells and its secretome, as they are increasing during aging. In conclusion, our work, uncovering SASP-induced NED in some cancer cells, paves the way for future studies aiming at better understanding the functional link between senescent cell accumulation during aging, NED and clinical patient outcome.


Assuntos
Neoplasias da Mama , Transdiferenciação Celular , NF-kappa B , Idoso , Neoplasias da Mama/metabolismo , Transdiferenciação Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Humanos , Masculino , NF-kappa B/metabolismo , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Secretoma
7.
Cell Death Dis ; 12(2): 190, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594040

RESUMO

Although aging is a major risk factor for most types of cancers, it is barely studied in this context. The transmembrane protein PLA2R1 (phospholipase A2 receptor) promotes cellular senescence, which can inhibit oncogene-induced tumor initiation. Functions and mechanisms of action of PLA2R1 during aging are largely unknown. In this study, we observed that old Pla2r1 knockout mice were more prone to spontaneously develop a wide spectrum of tumors compared to control littermates. Consistently, these knockout mice displayed increased Parp1, a master regulator of DNA damage repair, and decreased DNA damage, correlating with large human dataset analysis. Forced PLA2R1 expression in normal human cells decreased PARP1 expression, induced DNA damage and subsequent senescence, while the constitutive expression of PARP1 rescued cells from these PLA2R1-induced effects. Mechanistically, PARP1 expression is repressed by a ROS (reactive oxygen species)-Rb-dependent mechanism upon PLA2R1 expression. In conclusion, our results suggest that PLA2R1 suppresses aging-induced tumors by repressing PARP1, via a ROS-Rb signaling axis, and inducing DNA damage and its tumor suppressive responses.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Receptores da Fosfolipase A2/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Bases de Dados Genéticas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Fosfolipase A2/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
8.
Glia ; 61(7): 1041-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23553667

RESUMO

Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.


Assuntos
Proteínas de Transporte/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Receptor ErbB-2/genética , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Frações Subcelulares/metabolismo
9.
Proc Natl Acad Sci U S A ; 106(41): 17528-33, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805030

RESUMO

Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.


Assuntos
Proteínas/genética , Animais , Biópsia , Membrana Celular/patologia , Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Éxons , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação , Bainha de Mielina/patologia , Prevalência , Regiões Promotoras Genéticas , Células de Schwann/patologia , Nervo Sural/patologia , Domínios de Homologia de src/genética
10.
Int J Cancer ; 121(2): 292-300, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17372903

RESUMO

Germline RET mutations are responsible for different inherited disorders: Hirschsprung disease (congenital aganglionic megacolon), caused by loss of function mutations, familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2, caused by gain of function mutations. Intriguingly, some RET mutations, including C620R, are associated with both types of diseases. To investigate the dual role of such RET mutations, a mouse model with a targeted mutation ret(C620R) was generated. ret(C620R/C620R) offspring die during the first postnatal day, and show kidney agenesis and intestinal aganglionosis. Decreased outgrowth of the Ret-positive cells was observed in ret(C620R/C620R) neuronal cell cultures, which is suggestive of an impaired migration, proliferation or survival of the Ret-expressing cells. Electronmicroscopy revealed the absence of membrane-bound Ret in ret(C620R/C620R) cells as compared to ret(+/+) and ret(+/C620R) cells. On the other hand, aged ret(+/C620R) mice develop precancerous lesions in the adrenal gland or in the thyroid. Our results suggest that the ret(C620R) mutation has a loss of function effect in homozygotes and exhibits a dominant gain of function effect with low penetrance causing hyperplasia in heterozygotes.


Assuntos
Anormalidades Múltiplas/genética , Mutação , Proteínas Proto-Oncogênicas c-ret/fisiologia , Anormalidades Múltiplas/patologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Heterozigoto , Doença de Hirschsprung/patologia , Homozigoto , Rim/anormalidades , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas c-ret/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
11.
J Med Virol ; 71(3): 446-55, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12966553

RESUMO

X-linked lymphoproliferative disease is characterized by immune dysregulation and uncontrolled lymphoproliferation on exposure to Epstein-Barr virus (EBV). This disease has been attributed to mutations in the SAP gene (also denominated as SH2D1A or DSHP). To delineate the role of SAP in the pathophysiology of X-linked lymphoproliferative disease, a strain of sap-deficient mice has been generated by deleting exon 2 of the gene. After infection with murine gammaherpesvirus-68, which is homologous to EBV, the mutant mice exhibit more vigorous CD8+ T cell proliferation and more disseminated lymphocyte infiltration compared to their wild-type littermates. Chronic tissue damage and hemophagocytosis were evident in sap-deficient mice but not in their wild-type littermates. Concordantly, murine gammaherpesvirus-68 reactivation was observed in sap-deficient mice, indicating an impaired control of the virus. Notably, IgE deficiency and decreased serum IgG level were observed in mutant mice prior to and after murine gammaherpesvirus-68 infection, which reproduces hypo-gammaglobulinemia in X-linked lymphoproliferative disease patients. This mouse model will therefore be a useful tool for dissecting the various phenotypes of X-linked lymphoproliferative disease.


Assuntos
Agamaglobulinemia/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Gammaherpesvirinae/patogenicidade , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos Linfoproliferativos/genética , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Cricetinae , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Humanos , Imunoglobulina G/biossíntese , Fígado/patologia , Pulmão/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária , Linfócitos T/imunologia , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA