Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Blood Adv ; 8(5): 1234-1249, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207211

RESUMO

ABSTRACT: JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1ß (IL-1ß)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1ß-/- or IL-1R1-/- mice. To study the role of IL-1ß and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1ß in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1ß levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1ß levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1ß antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1ß as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.


Assuntos
Transtornos Mieloproliferativos , Animais , Camundongos , Animais Geneticamente Modificados , Transplante de Medula Óssea , Células-Tronco Hematopoéticas , Interleucina-1beta , Transtornos Mieloproliferativos/genética
2.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001082

RESUMO

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Tamoxifeno/uso terapêutico , Tamoxifeno/metabolismo , Mutação , Calreticulina/genética , Calreticulina/metabolismo
3.
Blood Cancer Discov ; 4(5): 349-351, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655401

RESUMO

SUMMARY: Although inflammation has long been recognized as a hallmark of many cancers, including acute myeloid leukemia (AML), how it affects individual cells of the tumor microenvironment and their interaction with normal and neoplastic cells is incompletely understood. A comprehensive single-cell transcriptomic analysis of human bone marrow from patients with AML and healthy individuals identified skewing of stem cell and stromal cell populations in AML toward proinflammatory states associated with reduced risk of relapse, paralleling previous findings in mouse models and suggesting that inflamed bone marrow mesenchymal stromal cells might be a double-edged sword in AML by hampering normal hematopoiesis (while AML cells appear comparatively more resilient) but also rendering AML cells more susceptible to chemotherapy or immune attack. See related article by Chen et al., p. 394 (7) .


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Leucemia Mieloide Aguda/genética , Modelos Animais de Doenças , Nível de Saúde , Inflamação , Microambiente Tumoral/genética
4.
Nat Cancer ; 4(8): 1193-1209, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550517

RESUMO

Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/patologia , Medula Óssea/patologia , Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/patologia , Osso e Ossos/patologia , Microambiente Tumoral/genética
5.
Nat Commun ; 13(1): 5346, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100613

RESUMO

Interleukin-1ß (IL-1ß) is a master regulator of inflammation. Increased activity of IL-1ß has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1ß serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1ß overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1ß in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1ß in JAK2-V617F mutant mice by anti-IL-1ß antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1ß with anti-IL-1ß antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.


Assuntos
Interleucina-1beta/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos , Neoplasias , Osteosclerose , Mielofibrose Primária , Animais , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Nitrilas , Osteosclerose/genética , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Pirazóis , Pirimidinas
6.
Nat Cell Biol ; 24(8): 1211-1225, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902769

RESUMO

Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.


Assuntos
Hemangioblastos , Mesonefro , Animais , Aorta , Hematopoese/genética , Células-Tronco Hematopoéticas , Mesoderma , Camundongos
7.
Leukemia ; 36(8): 1969-1979, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618797

RESUMO

Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Medula Óssea/metabolismo , Metabolismo Energético , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Oxirredução , Microambiente Tumoral
10.
EMBO J ; 41(8): e110942, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35274751

RESUMO

How blood stem cells balance fate decisions between quiescence maintenance and differentiation during recovery from cancer treatment remains poorly understood. A recent study by Umemoto et al (2022) uncovers an unexpected linkage between metabolic and epigenetic regulation of haematopoiesis, suggesting new targets in haematopoietic regeneration, with possible implications in leukaemogenesis and therapy resistance.


Assuntos
Epigênese Genética , Células-Tronco Hematopoéticas , Carcinogênese/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos
11.
Cell Stem Cell ; 29(4): 528-544.e9, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276096

RESUMO

The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects.


Assuntos
Interleucina-6 , Osteogênese , Colinérgicos , Fibras Colinérgicas , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia
12.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192546

RESUMO

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Assuntos
Plaquetas , Sepse , Animais , Plaquetas/metabolismo , Ligante de CD40 , Megacariócitos , Sepse/metabolismo , Baço
13.
Front Oncol ; 12: 840044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186768

RESUMO

Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.

14.
Nat Commun ; 13(1): 543, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087060

RESUMO

The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.


Assuntos
Colinérgicos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/metabolismo , Quimiocina CXCL12/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores Adrenérgicos beta 3/metabolismo , Fatores de Risco
15.
Cell Death Dis ; 12(8): 729, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294700

RESUMO

Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Receptor TIE-2/metabolismo , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Proteína Morfogenética Óssea 2/sangue , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcinose/fisiopatologia , Condrogênese , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/patologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/diagnóstico por imagem , Osteogênese , Tomografia Computadorizada por Raios X
16.
Front Cell Dev Biol ; 9: 689366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295894

RESUMO

Mesenchymal stem/stromal cells (MSCs) are present in various body tissues and help in maintaining homeostasis. The stemness of MSCs has been evaluated in vitro. In addition, analyses of cell surface antigens and gene expression patterns have shown that MSCs comprise a heterogeneous population, and the diverse and complex nature of MSCs makes it difficult to identify the specific roles in diseases. There is a lack of understanding regarding the classification of MSC properties. In this review, we explore the characteristics of heterogeneous MSC populations based on their markers and gene expression profiles. We integrated the contents of previously reported single-cell analysis data to better understand the properties of mesenchymal cell populations. In addition, the cell populations involved in the development of myeloproliferative neoplasms (MPNs) are outlined. Owing to the diversity of terms used to describe MSCs, we used the text mining technology to extract topics from MSC research articles. Recent advances in technology could improve our understanding of the diversity of MSCs and help us evaluate cell populations.

17.
Methods Mol Biol ; 2308: 119-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057719

RESUMO

Immunofluorescence is an indispensable method for the identification, localization and study of the expression of target antigens in formalin-fixed, paraffin-embedded (FFPE) tissue sections of human bone marrow. However, the procedure shows technical limitations because of the chemical and physical treatments required for sample processing before imaging. Here we describe a revisited protocol to obtain high-resolution images of human bone marrow trephine biopsies, improving the antigen-antibody recognition and preserving the morphology and the architecture of the bone marrow microenvironment.


Assuntos
Antígenos/análise , Medula Óssea/imunologia , Imunofluorescência , Microscopia de Fluorescência , Inclusão em Parafina , Biomarcadores/análise , Biópsia , Microambiente Celular , Cor , Humanos , Micro-Ondas , Fixação de Tecidos
19.
Nat Commun ; 12(1): 608, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504783

RESUMO

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana/metabolismo , Netrina-1/metabolismo , Nicho de Células-Tronco , Animais , Arteríolas/metabolismo , Diferenciação Celular , Proliferação de Células , Senescência Celular , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas , Camundongos Mutantes , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA