Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(23): e0115521, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523969

RESUMO

Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.


Assuntos
Alphavirus/metabolismo , Antivirais/farmacologia , Proteína DEAD-box 58/metabolismo , Interferons/metabolismo , Salmonidae/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Vírus Chikungunya , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
Front Immunol ; 12: 679242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995423

RESUMO

Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.


Assuntos
Proteína DEAD-box 58/metabolismo , Peixes/genética , Peixes/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte , Proteína DEAD-box 58/genética , Peixes/imunologia , Regulação da Expressão Gênica , Homeostase , Imunidade Inata , Interferons/biossíntese , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Ligação Proteica , Complexos Ubiquitina-Proteína Ligase/metabolismo
3.
Fish Shellfish Immunol ; 84: 857-864, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385247

RESUMO

Interferon production is tightly regulated in order to prevent excessive immune responses. The RIG-I signaling pathway, which is one of the major pathways inducing the production of interferon, is therefore finely regulated through the participation of different molecules such as A20 (TNFAIP3). A20 is a negative key regulatory factor of the immune response. Although A20 has been identified and actively studied in mammals, nothing is known about its putative function in lower vertebrates. In this study, we sought to define the involvement of fish A20 orthologs in the regulation of RIG-I signaling. We showed that A20 completely blocked the activation of IFN and ISG promoters mediated by RIG-I. Furthermore, A20 expression in fish cells was sufficient to reverse the antiviral state induced by the expression of a constitutively active form of RIG-I, thus allowing the efficient replication of a fish rhabdovirus, the viral hemorrhagic septicemia virus (VHSV). We brought evidence that A20 interrupted RIG-I signaling at the level of TBK1 kinase, a critical point of convergence for many different pathways that activates important transcription factors involved in the expression of many cytokines. Finally, we showed that A20 expression was directly induced by the RIG-I pathway demonstrating that fish A20 acts as a negative feedback regulator of this key pathway for the establishment of an antiviral state.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Proteína DEAD-box 58/genética , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Interferons/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/fisiologia , Animais , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Retroalimentação Fisiológica , Proteínas de Peixes/genética , Proteínas de Peixes/fisiologia , Interferons/metabolismo , Novirhabdovirus/fisiologia , Filogenia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
4.
Sci Rep ; 7: 44025, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276468

RESUMO

Non virion (NV) protein expression is critical for fish Novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV), in vivo pathogenesis. However, the mechanism by which NV promotes the viral replication is still unclear. We developed an approach based on reverse genetics and interactomic and identified several NV-associated cellular partners underlying cellular pathways as potential viral targets. Among these cell partners, we showed that NV proteins specifically interact with a protein phosphatase, Mg2+/Mn2+-dependent, 1Bb (PPM1Bb) and recruit it in the close vicinity of mitochondria, a subcellular compartment important for retinoic acid-inducible gene-I- (RIG-I)-mediated interferon induction pathway. PPM1B proteins belong to the PP2C family of serine/threonine (Ser/Thr) protein phosphatase and have recently been shown to negatively regulate the host antiviral response via dephosphorylating Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1). We demonstrated that NV proteins and PPM1Bb counteract RIG-I- and TBK1-dependent interferon (IFN) and IFN-stimulated gene promoter induction in fish cells and, hence, the establishment of an antiviral state. Furthermore, the expression of VHSV NV strongly reduced TBK1 phosphorylation and thus its activation. Our findings provide evidence for a previously undescribed mechanism by which a viral protein recruits PPM1Bb protein phosphatase to subvert innate immune recognition.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Interferons/metabolismo , Novirhabdovirus/metabolismo , Oncorhynchus mykiss/metabolismo , Proteína Fosfatase 2C/metabolismo , Infecções por Rhabdoviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Novirhabdovirus/genética , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/genética , Proteínas Virais/genética
5.
PLoS One ; 11(10): e0164245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711176

RESUMO

Novirhabdoviruses like Viral Hemorrhagic Septicemia Virus (VHSV) and Infectious Hematopoietic Necrosis Virus (IHNV) are fish-infecting Rhabdoviruses belonging to the Mononegavirales order. By reverse genetics, we previously showed that a recombinant VHSV expressing the West Nile Virus (WNV) E glycoprotein could serve as a vaccine platform against WNV. In the current study, we aimed to evaluate the potential of the Novirhabdovirus platform as a vaccine against influenza virus. Recombinant Novirhabdoviruses, rVHSV-HA and rIHNV-HA, expressing at the viral surface the hemagglutinin HA ectodomain were generated and used to immunized mice. We showed that mice immunized with either, rVHSV-HA or rIHNV-HA, elicited a strong neutralizing antibody response against influenza virus. A complete protection was conferred to the immunized mice when challenged with a lethal dose of influenza H1N1 A/PR/8/34 virus. Furthermore we showed that although acting as inert antigen in mice, since naturally inactivated over 20°C, mice immunized with rVHSV-HA or rIHNV-HA in the absence of adjuvant were also completely protected from a lethal challenge. Novirhabdoviruses platform are of particular interest as vaccines for mammals since they are cost effective to produce, relatively easy to generate and very effective to protect immunized animals.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Novirhabdovirus/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Carpas , Linhagem Celular , Cães , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Hemaglutininas/genética , Hemaglutininas/imunologia , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Novirhabdovirus/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
6.
J Virol ; 90(23): 10857-10866, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681130

RESUMO

The genome of infectious hematopoietic necrosis virus (IHNV), a salmonid novirhabdovirus, has been engineered to modify the gene order and to evaluate the impact on a possible attenuation of the virus in vitro and in vivo By reverse genetics, eight recombinant IHNVs (rIHNVs), termed NxGy according to the respective positions of the nucleoprotein (N) and glycoprotein (G) genes along the genome, have been recovered. All rIHNVs have been fully characterized in vitro for their cytopathic effects, kinetics of replication, and profiles of viral gene transcription. These rIHNVs are stable through up to 10 passages in cell culture. Following bath immersion administration of the various rIHNVs to juvenile trout, some of the rIHNVs were clearly attenuated (N2G3, N2G4, N3G4, and N4G1). The position of the N gene seems to be one of the most critical features correlated to the level of viral attenuation. The induced immune response potential in fish was evaluated by enzyme-linked immunosorbent spot assay (ELISPOT) and seroneutralization assays. The recombinant virus N2G3 induced a strong antibody response in immunized fish and conferred 86% of protection against wild-type IHNV challenge in trout, thus representing a promising starting point for the development of a live attenuated vaccine candidate. IMPORTANCE: In Europe, no vaccines are available against infectious hematopoietic necrosis virus (IHNV), one of the major economic threats in fish aquaculture. Live attenuated vaccines are conditioned by a sensible balance between attenuation and pathogenicity. Moreover, nonsegmented negative-strain RNA viruses (NNSV) are subject to a transcription gradient dictated by the order of the genes in their genomes. With the perspective of developing a vaccine against IHNV, we engineered various recombinant IHNVs with reordered genomes in order to artificially attenuate the virus. Our results validate the gene rearrangement approach as a potent and stable attenuation strategy for fish novirhabdovirus and open a new perspective for design of vaccines against other NNSV.


Assuntos
Doenças dos Peixes/prevenção & controle , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Necrose Hematopoética Infecciosa/imunologia , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/genética , Animais , Anticorpos Antivirais/biossíntese , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Expressão Gênica , Ordem dos Genes , Genoma Viral , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Cinética , Oncorhynchus mykiss , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
7.
J Gen Virol ; 97(4): 893-900, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801972

RESUMO

In this study, we aimed to characterize the epitope recognized by the neutralizing 17H23 mAb directed against the E2 glycoprotein of most of salmonid alphavirus (SAV) subtypes and widely used in several laboratories to routinely diagnose SAV. We hypothesized that the 17H23 epitope was located in the major domain B, previously identified in the E2 of mammalian alphaviruses as the domain recognized by most of the E2 neutralizing mAbs. Indeed, the SAV E2 domain B counterpart is contained in the protein domain previously characterized as being recognized by mAb 17H23. Thus, to precisely characterize the 17H23 epitope, we developed an alanine scanning mutagenesis approach coupled with the generation of the respective recombinant SAV (rSAV) by using the available infectious cDNA. Ten mutant rSAVs termed A-J from E2 aa 223-236 were produced and characterized in vitro using indirect immunofluorescence assays on virus-infected cells with mAbs 17H23, 51B8 (another non-neutralizing anti-E2 mAb) and 19F3 directed against the non-structural protein nsp1. Two of the mutant rSAVs (G and H) escaped neutralization by mAb 17H23. In addition, we showed that when juvenile trout were infected by bath immersion with the rSAV mutants, some of them were either totally (D, E and G) or partially (H) attenuated. Together, the data from the in vitro and in vivo experiments indicated that the putative 17H23 amino acid sequence epitope comprised the short amino acid sequence (227)FTSDS(231).


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Doenças dos Peixes/imunologia , Proteínas do Envelope Viral/imunologia , Alphavirus/genética , Infecções por Alphavirus/genética , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Linhagem Celular , Mapeamento de Epitopos , Epitopos/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Testes de Neutralização , Oncorhynchus mykiss/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
8.
PLoS One ; 9(3): e91766, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663075

RESUMO

West Nile Virus (WNV) is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed in our laboratory for VHSV allowing the addition of genes in the viral genome and the recovery of the respective recombinant viruses (rVHSV). In this study, we have generated rVHSV vectors bearing the complete WNV envelope gene (EWNV) (rVHSV-EWNV) or fragments encoding E subdomains (either domain III alone or domain III fused to domain II) (rVHSV-DIIIWNV and rVHSV-DII-DIIIWNV, respectively) in the VHSV genome between the N and P cistrons. With the objective to enhance the targeting of the EWNV protein or EWNV-derived domains to the surface of VHSV virions, Novirhadovirus G-derived signal peptide and transmembrane domain (SPG and TMG) were fused to EWNV at its amino and carboxy termini, respectively. By Western-blot analysis, electron microscopy observations or inoculation experiments in mice, we demonstrated that both the EWNV and the DIIIWNV could be expressed at the viral surface of rVHSV upon addition of SPG. Every constructs expressing EWNV fused to SPG protected 40 to 50% of BALB/cJ mice against WNV lethal challenge and specifically rVHSV-SPGEWNV induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EWNV-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly incorporated in the virion and expressed at the viral surface. In this study we demonstrated that a heterologous glycoprotein and non membrane-anchored protein, can be efficiently expressed at the surface of rVHSV making this approach attractive to develop new vaccines against various pathogens.


Assuntos
Apresentação de Antígeno , DNA Recombinante/genética , Novirhabdovirus/genética , Novirhabdovirus/imunologia , Proteínas do Envelope Viral/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linhagem Celular , Feminino , Vetores Genéticos/genética , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Células Th2/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírus do Nilo Ocidental/imunologia
9.
J Virol ; 84(19): 10038-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20631140

RESUMO

The genome sequence of a hypervirulent novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) French strain 23-75, was determined. Compared to the genome of the prototype Fil3 strain, a number of substitutions, deletions, and insertions were observed. Following the establishment of a plasmid-based minigenome replication assay, recombinant VHSV (rVHSV) was successfully recovered. rVHSV exhibits wild-type-like growth properties in vitro as well as in vivo in rainbow trout. The dispensable role of NV for the novirhabdovirus replication was confirmed by generating rVHSV-DeltaNV, in which the NV gene was deleted. This deletion mutant was shown to be as debilitated as that previously described for infectious hematopoietic necrosis virus (IHNV), a distantly related novirhabdovirus (S. Biacchesi, M. I. Thoulouze, M. Bearzotti, Y. X. Yu, and M. Bremont, J. Virol. 74:11247-11253, 2000). Recombinant VHSV and IHNV expressing tdTomato and GFP(max) reporter genes, respectively, were generated, demonstrating the potential of these rhabdoviruses to serve as viral vectors. Interestingly, rIHNV-GFP(max) could be recovered using the replicative complex proteins of either virus, whereas rVHSV-Tomato could be recovered only by using its own replicative complex, reflecting that the genome signal sequences of VHSV are relatively distant from those of IHNV and do not allow their cross-recognition. Moreover, the use of heterologous protein combinations underlined the importance of strong protein-protein interactions for the formation of a functional ribonucleoprotein complex. The rIHNV-GFP(max) and rVHSV-Tomato viruses were used to simultaneously coinfect cell monolayers. It was observed that up to 74% of the cell monolayer was coinfected by both viruses, demonstrating that a limited interference phenomenon exists during the early stage of primary infection, and it was not mediated by a cellular antiviral protein or by some of the viral proteins.


Assuntos
Vírus da Necrose Hematopoética Infecciosa/fisiologia , Novirhabdovirus/fisiologia , Infecções por Rhabdoviridae/virologia , Interferência Viral/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , DNA Viral/genética , Genes Reporter , Genoma Viral , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Dados de Sequência Molecular , Mutação , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Oncorhynchus mykiss , Plasmídeos/genética , Recombinação Genética , Interferência Viral/genética , Virulência/genética , Virulência/fisiologia , Replicação Viral
10.
Proc Natl Acad Sci U S A ; 107(19): 8772-7, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421464

RESUMO

Crohn's disease (CD), a major form of human inflammatory bowel disease, is characterized by primary immunodeficiencies. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for intestinal homeostasis in response to both dietary- and microbiota-derived signals. Its role in host defense remains unknown, however. We show that PPARgamma functions as an antimicrobial factor by maintaining constitutive epithelial expression of a subset of beta-defensin in the colon, which includes mDefB10 in mice and DEFB1 in humans. Colonic mucosa of Ppargamma mutant animals shows defective killing of several major components of the intestinal microbiota, including Candida albicans, Bacteroides fragilis, Enterococcus faecalis, and Escherichia coli. Neutralization of the colicidal activity using an anti-mDefB10 blocking antibody was effective in a PPARgamma-dependent manner. A functional promoter variant that is required for DEFB1 expression confers strong protection against Crohn's colitis and ileocolitis (odds ratio, 0.559; P = 0.018). Consistently, colonic involvement in CD is specifically linked to reduced expression of DEFB1 independent of inflammation. These findings support the development of PPARgamma-targeting therapeutic and/or nutritional approaches to prevent colonic inflammation by restoring antimicrobial immunity in CD.


Assuntos
Bactérias/imunologia , Colo/imunologia , Colo/microbiologia , Fungos/imunologia , Imunidade Inata/imunologia , PPAR gama/metabolismo , Animais , Linhagem Celular , Colo/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Regulação da Expressão Gênica , Frequência do Gene/genética , Genótipo , Humanos , Íleo/imunologia , Íleo/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , PPAR gama/deficiência , Regiões Promotoras Genéticas/genética , Ligação Proteica , beta-Defensinas/genética , beta-Defensinas/metabolismo
11.
J Biol Chem ; 284(48): 33466-74, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19808675

RESUMO

Chronic hepatitis C virus (HCV) infection is associated with altered lipid metabolism and hepatocellular steatosis. Virus-induced steatosis is a cytopathic effect of HCV replication. The goal of this study was to examine the mechanisms underlying HCV-induced lipid metabolic defects in a transgenic mouse model expressing the full HCV protein repertoire at levels corresponding to natural human infection. In this model, expression of the HCV full-length open reading frame was associated with hepatocellular steatosis and reduced plasma triglyceride levels. Triglyceride secretion was impaired, whereas lipogenesis was activated. Increased lipogenic enzyme transcription was observed, resulting from maturational activation and nuclear translocation of sterol regulatory element-binding protein 1c (SREBP1c). However, endoplasmic reticulum (ER) stress markers were expressed at similar levels in both HCV transgenic mice and their wild type counterparts, suggesting that SREBP1c proteolytic cleavage in the presence of HCV proteins was independent of ER stress. In conclusion, transgenic mice expressing the HCV full-length polyprotein at low levels have decreased plasma triglyceride levels and develop hepatocellular steatosis in the same way as HCV-infected patients. In these mice, SREBP1c activation by one or several HCV proteins induces de novo triglyceride synthesis via the lipogenic pathway, in a manner independent of ER stress, whereas triglyceride secretion is simultaneously reduced.


Assuntos
Hepacivirus/metabolismo , Lipogênese/fisiologia , Triglicerídeos/metabolismo , Proteínas Virais/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/complicações , Hepatite C/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA