Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 16: 218-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362512

RESUMO

Methionine (Met) is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth. The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health. Fertilized eggs of the two genotypes, TETRA-SL layer hybrid (TSL) - commercial layer hybrid and Hungarian Partridge colored hen breed (HPC) - a native genotype, were randomly distributed into four treatments for each genotype. The treatment groups include the following: 1) control non-injected eggs (NoIn); 2) saline-injected (SaIn); 3) DL-Met injected (DLM); and 4) L-Met injected (LM). The in ovo injection was carried out on 17.5 d of embryonic development; after hatching, eight chicks per group were sacrificed, and the jejunum was extracted for analysis. The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width, villus height, and villus area (P < 0.05) compared to the control. The DLM group had significantly reduced crypt depth, glutathione content (GSH), glutathione S-transferase 3 alpha (GST3), occludin (OCLN) gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group (P < 0.05). The HPC genotype has overexpressed insulin-like growth factor 1 (IGF1) gene, tricellulin (MD2), occludin (OCLN), superoxide dismutase 1 (SOD1), and GST3 genes than the TSL genotype (P < 0.05). In conclusion, these findings showed that in ovo injection of Met enhanced intestinal development, and function, with genotypes responding differently under normal conditions. Genotypes also influenced the expression of intestinal antioxidants, tight junction, and growth-related genes.

2.
Transl Cancer Res ; 8(8): 2916-2923, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35117049

RESUMO

Hundreds of articles discuss the imaging characteristics and molecular background of prominent gastrointestinal (GI) motility disorders and tumors of the peripheral nervous system, but according to our knowledge an article focusing on the classification and developmental background of these heterogeneous diseases is not to be found. Our aim is to give insight on the common features of several diseases and tumors, starting with their common source of origin, the neural crest (NC). The NC is a transient cell population of the embryo, which differentiates into several organs/structures of our body (sympathetic trunk, adrenal medulla). Although the incidence of the individual tumors of NC cells is not high by themselves, the summation of these incidences may be relevant in the daily routine. In the introduction we mention the most prominent developmental routes and molecular pathways of NC cells, which is crucial to understand the pathogenesis and the wide range of involved cell types from the colon to the adrenal gland. We summarized the most important, useful pathological findings and imaging techniques from the X-ray to the positron emission tomography-computed tomography (CT) in order to help the identification of these diseases. This article may help to better understand NC lineage and its unique, diverse role during ontogeny, which may influence the radiologists to change several convictions, or understand better the background and/or connections of a wide range of tumors and syndromes.

3.
Sci Rep ; 8(1): 157, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317695

RESUMO

Gaucher disease is a lysosomal storage disease characterized by the malfunction of glucocerebrosidase resulting in the accumulation of glucosylceramide and other sphingolipids in certain cells. Although the disease symptoms are usually attributed to the storage of undigested substrate in lysosomes, here we show that glycosphingolipids accumulating in the plasma membrane cause profound changes in the properties of the membrane. The fluidity of the sphingolipid-enriched membrane decreased accompanied by the enlargement of raft-like ordered membrane domains. The mobility of non-raft proteins and lipids was severely restricted, while raft-resident components were only mildly affected. The rate of endocytosis of transferrin receptor, a non-raft protein, was significantly retarded in Gaucher cells, while the endocytosis of the raft-associated GM1 ganglioside was unaffected. Interferon-γ-induced STAT1 phosphorylation was also significantly inhibited in Gaucher cells. Atomic force microscopy revealed that sphingolipid accumulation was associated with a more compliant membrane capable of producing an increased number of nanotubes. The results imply that glycosphingolipid accumulation in the plasma membrane has significant effects on membrane properties, which may be important in the pathogenesis of Gaucher disease.


Assuntos
Membrana Celular/metabolismo , Doença de Gaucher/metabolismo , Glicoesfingolipídeos/metabolismo , Células Cultivadas , Endocitose , Imunofluorescência , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Força Atômica , Mutação , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA