Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(1): 153-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593295

RESUMO

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulação da Expressão Gênica de Plantas , Luz , Nitrogênio , Spliceossomos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Antocianinas/metabolismo
2.
Plant Cell Environ ; 46(11): 3371-3391, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606545

RESUMO

The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.


Assuntos
Chaperonina 60 , Cloroplastos , Cloroplastos/metabolismo , Chaperonina 60/análise , Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Proteínas de Cloroplastos/metabolismo
3.
Sci Adv ; 7(51): eabi8307, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919428

RESUMO

Photosynthetically produced electrons provide energy for various metabolic pathways, including carbon reduction. Four Calvin-Benson cycle enzymes and several other plastid proteins are activated in the light by reduction of specific cysteines via thioredoxins, a family of electron transporters operating in redox regulation networks. How does this network link the photosynthetic chain with cellular metabolism? Using a time-resolved redox proteomic method, we have investigated the redox network in vivo during the dark­to­low light transition. We show that redox states of some thioredoxins follow the photosynthetic linear electron transport rate. While some redox targets have kinetics compatible with an equilibrium with one thioredoxin (TRXf), reduction of other proteins shows specific kinetic limitations, allowing fine-tuning of each redox-regulated step of chloroplast metabolism. We identified five new redox-regulated proteins, including proteins involved in Mg2+ transport and 1O2 signaling. Our results provide a system-level functional view of the photosynthetic redox regulation network.

4.
Microbiol Spectr ; 9(2): e0080921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585988

RESUMO

Import and oxidative folding of proteins in the mitochondrial intermembrane space differ among eukaryotic lineages. While opisthokonts such as yeast rely on the receptor and oxidoreductase Mia40 in combination with the Mia40:cytochrome c oxidoreductase Erv, kinetoplastid parasites and other Excavata/Discoba lack Mia40 but have a functional Erv homologue. Whether excavate Erv homologues rely on a Mia40 replacement or directly interact with imported protein substrates remains controversial. Here, we used the CRISPR-Cas9 system to generate a set of tagged and untagged homozygous mutants of LTERV from the kinetoplastid model parasite Leishmania tarentolae. Modifications of the shuttle cysteine motif of LtErv were lethal, whereas replacement of clamp residue Cys17 or removal of the kinetoplastida-specific second (KISS) domain had no impact on parasite viability under standard growth conditions. However, removal of the KISS domain rendered parasites sensitive to heat stress and led to the accumulation of homodimeric and mixed LtErv disulfides. We therefore determined and compared the redox interactomes of tagged wild-type LtErv and LtErvΔKISS using stable isotope labeling by amino acids in cell culture (SILAC) and quantitative mass spectrometry. While the Mia40-replacement candidate Mic20 and all but one typical substrate with twin Cx3/9C-motifs were absent in both redox interactomes, we identified a small set of alternative potential interaction partners with putative redox-active cysteine residues. In summary, our study reveals parasite-specific intracellular structure-function relationships and redox interactomes of LtErv with implications for current hypotheses on mitochondrial protein import in nonopisthokonts. IMPORTANCE The discovery of the redox proteins Mia40/CHCHD4 and Erv1/ALR, as well as the elucidation of their relevance for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals, founded a new research topic in redox biology and mitochondrial protein import. The lack of Mia40/CHCHD4 in protist lineages raises fundamental and controversial questions regarding the conservation and evolution of this essential pathway. Do protist Erv homologues act alone, or do they use the candidate Mic20 or another protein as a Mia40 replacement? Furthermore, we previously showed that Erv homologues in L. tarentolae and the human pathogen L. infantum are not only essential but also differ structurally and mechanistically from yeast and human Erv1/ALR. Here, we analyzed the relevance of such structural differences in vivo and determined the first redox interactomes of a nonopisthokont Erv homologue. Our data challenge recent hypotheses on mitochondrial protein import in nonopisthokonts.


Assuntos
Leishmania/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sistemas CRISPR-Cas/genética , Leishmania/classificação , Leishmania/genética , Oxirredução , Domínios Proteicos/genética , Dobramento de Proteína , Transporte Proteico/genética , Relação Estrutura-Atividade
5.
Mol Neurodegener ; 16(1): 34, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078425

RESUMO

BACKGROUND: There is increasing evidence that Parkinson's disease (PD) might start in the gut, thus involving and compromising also the enteric nervous system (ENS). At the clinical onset of the disease the majority of dopaminergic neurons in the midbrain is already destroyed, so that the lack of early biomarkers for the disease represents a major challenge for developing timely treatment interventions. Here, we use a transgenic A30P-α-synuclein-overexpressing PD mouse model to identify appropriate candidate markers in the gut before hallmark symptoms begin to manifest. METHODS: Based on a gait analysis and striatal dopamine levels, we defined 2-month-old A30P mice as pre-symptomatic (psA30P), since they are not showing any motoric impairments of the skeletal neuromuscular system and no reduced dopamine levels, but an intestinal α-synuclein pathology. Mice at this particular age were further used to analyze functional and molecular alterations in both, the gastrointestinal tract and the ENS, to identify early pathological changes. We examined the gastrointestinal motility, the molecular composition of the ENS, as well as the expression of regulating miRNAs. Moreover, we applied A30P-α-synuclein challenges in vitro to simulate PD in the ENS. RESULTS: A retarded gut motility and early molecular dysregulations were found in the myenteric plexus of psA30P mice. We found that i.e. neurofilament light chain, vesicle-associated membrane protein 2 and calbindin 2, together with the miRNAs that regulate them, are significantly altered in the psA30P, thus representing potential biomarkers for early PD. Many of the dysregulated miRNAs found in the psA30P mice are reported to be changed in PD patients as well, either in blood, cerebrospinal fluid or brain tissue. Interestingly, the in vitro approaches delivered similar changes in the ENS cultures as seen in the transgenic animals, thus confirming the data from the mouse model. CONCLUSIONS: These findings provide an interesting and novel approach for the identification of appropriate biomarkers in men.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/etiologia , Transtornos Parkinsonianos/fisiopatologia , Sintomas Prodrômicos , Animais , Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
7.
Mol Cell ; 77(1): 189-202.e6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31668496

RESUMO

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Assuntos
Morte Celular/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteostase/fisiologia , Proteases Dependentes de ATP/metabolismo , Animais , Apoptose/fisiologia , Fator de Indução de Apoptose/metabolismo , Citosol/metabolismo , Transporte de Elétrons/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Plants ; 4(8): 564-575, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30061751

RESUMO

Chloroplast gene expression is a fascinating and highly regulated process, which was mainly studied on specific genes in a few model organisms including the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii) and the embryophyte (land) plants tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). However, a direct plastid genome-wide interspecies comparison of chloroplast gene expression that includes translation was missing. We adapted a targeted chloroplast ribosome profiling approach to quantitatively compare RNA abundance and translation output between Chlamydomonas, tobacco and Arabidopsis. The re-analysis of established chloroplast mutants confirmed the capability of the approach by detecting known as well as previously undetected translation defects (including the potential photosystem II assembly-dependent regulation of PsbH). Systematic comparison of the algal and land plant wild-type gene expression showed that, for most genes, the steady-state translation output is highly conserved among the three species, while the levels of transcript accumulation are more distinct. Whereas in Chlamydomonas transcript accumulation and translation output are closely balanced, this correlation is less obvious in embryophytes, indicating more pronounced translational regulation. Altogether, this suggests that green algae and land plants evolved different strategies to achieve conserved levels of protein synthesis.


Assuntos
Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Nicotiana/genética , RNA de Plantas/metabolismo , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Sequência Conservada , Biossíntese de Proteínas , Ribossomos/metabolismo , Ribossomos/fisiologia , Nicotiana/metabolismo
9.
Biochim Biophys Acta ; 1847(9): 872-88, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25596449

RESUMO

Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
Trifosfato de Adenosina/fisiologia , Chaperonas Moleculares/fisiologia , Plastídeos/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Oxirredução , Dobramento de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA