Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(10): e1009460, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710086

RESUMO

Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.


Assuntos
Aedes , Mosquitos Vetores , Ondas de Rádio , Aedes/fisiologia , Aedes/efeitos da radiação , Animais , Feminino , Temperatura Alta , Masculino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/efeitos da radiação , Febre Amarela/transmissão
2.
PLoS One ; 12(12): e0189082, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216248

RESUMO

BACKGROUND: Identifying priority areas for vector control is of considerable public health relevance. Arthropod-borne viruses (arboviruses) spread by Aedes mosquitoes are (re)emerging in many parts of the tropics, partially explained by changes in agricultural land-use. We explored the effects of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes mosquitoes along a gradient of anthropogenic disturbance in oil palm-dominated landscapes in southeastern Côte d'Ivoire. METHODOLOGY: Between January and December 2014, eggs, larvae, pupae, and adults of Aedes mosquitoes were sampled in four types of macrohabitats (rainforest, polyculture, oil palm monoculture, and rural housing areas), using standard procedures (bamboo-ovitraps, metallic-ovitraps, larval surveys, and human-baited double-net traps). Immature stages were reared and adult mosquitoes identified at species level. PRINCIPAL FINDINGS: A total of 28,276 Aedes specimens belonging to 11 species were collected. No Aedes-positive microhabitat and only four specimens of Ae. aegypti were found in oil palm monoculture. The highest abundance of Aedes mosquitoes (60.9%) was found in polyculture, while the highest species richness (11 species) was observed in rainforest. Ae. aegypti was the predominant Aedes species, and exhibited high anthropophilic behavior inflicting 93.0% of total biting to humans. The biting rate of Aedes mosquitoes was 34.6 and 7.2-fold higher in polyculture and rural housing areas, respectively, compared to rainforest. Three species (Ae. aegypti, Ae. dendrophilus, and Ae. vittatus) bit humans in polyculture and rural housing areas, with respective biting rates of 21.48 and 4.48 females/person/day. Unexpectedly, all three species were also feeding during darkness. Aedes females showed bimodal daily feeding cycles with peaks at around 08:00 a.m. and 05:00 p.m. Host-seeking activities were interrupted between 11:00 a.m. and 02:00 p.m. in rural housing areas, while no such interruption was observed in polyculture. Some rainforest-dwelling Aedes species displayed little preference to feed on humans. CONCLUSIONS: In southeastern Côte d'Ivoire, the agricultural land-use/land-cover changes due to the conversion of rainforest into oil palm monocultures influence the abundance, distribution, and host-seeking behaviors of anthropophagic and non-anthropophagic Aedes vectors. As a result, there is higher risk of humans to arbovirus transmission in polyculture and rural housing areas. There is a need for integrated vector management, including landscape epidemiology and ecotope-based vector control.


Assuntos
Aedes/virologia , Arbovírus/isolamento & purificação , Arecaceae , Conservação dos Recursos Naturais , Mosquitos Vetores , Animais , Côte d'Ivoire
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA