Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancer Immunol Immunother ; 73(3): 52, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349405

RESUMO

INTRODUCTION: As one of the major components of the tumor microenvironment, tumor-associated macrophages (TAMs) possess profound inhibitory activity against T cells and facilitate tumor escape from immune checkpoint blockade therapy. Converting this pro-tumorigenic toward the anti-tumorigenic phenotype thus is an important strategy for enhancing adaptive immunity against cancer. However, a plethora of mechanisms have been described for pro-tumorigenic differentiation in cancer, metabolic switches to program the anti-tumorigenic property of TAMs are elusive. MATERIALS AND METHODS: From an unbiased analysis of single-cell transcriptome data from multiple tumor models, we discovered that anti-tumorigenic TAMs uniquely express elevated levels of a specific fatty acid receptor, G-protein-coupled receptor 84 (GPR84). Genetic ablation of GPR84 in mice leads to impaired pro-inflammatory polarization of macrophages, while enhancing their anti-inflammatory phenotype. By contrast, GPR84 activation by its agonist, 6-n-octylaminouracil (6-OAU), potentiates pro-inflammatory phenotype via the enhanced STAT1 pathway. Moreover, 6-OAU treatment significantly retards tumor growth and increases the anti-tumor efficacy of anti-PD-1 therapy. CONCLUSION: Overall, we report a previously unappreciated fatty acid receptor, GPR84, that serves as an important metabolic sensing switch for orchestrating anti-tumorigenic macrophage polarization. Pharmacological agonists of GPR84 hold promise to reshape and reverse the immunosuppressive TME, and thereby restore responsiveness of cancer to overcome resistance to immune checkpoint blockade.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Camundongos , Carcinogênese , Ácidos Graxos , Macrófagos , Microambiente Tumoral , Macrófagos Associados a Tumor
2.
Nat Commun ; 15(1): 338, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184630

RESUMO

Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduce MarsGT: Multi-omics Analysis for Rare population inference using a Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperforms existing tools in identifying rare cells across 550 simulated and four real human datasets. In mouse retina data, it reveals unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detects an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identifies a rare MAIT-like population impacted by a high IFN-I response and reveals the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.


Assuntos
Linfócitos B , Multiômica , Humanos , Animais , Camundongos , Fontes de Energia Elétrica , Células Ependimogliais , Imunoterapia
3.
Cancer Res Commun ; 4(2): 293-302, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38259095

RESUMO

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE: Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.


Assuntos
Microbiota , Humanos , Filogenia , Microbiota/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala
4.
Comput Biol Med ; 165: 107458, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37703713

RESUMO

The identification of microbial characteristics associated with diseases is crucial for disease diagnosis and therapy. However, the presence of heterogeneity, high dimensionality, and large amounts of microbial data presents tremendous challenges in discovering key microbial features. In this paper, we present IDAM, a novel computational method for inferring disease-associated gene modules from metagenomic and metatranscriptomic data. This method integrates gene context conservation (uber-operons) and regulatory mechanisms (gene co-expression patterns) within a mathematical graph model to explore gene modules associated with specific diseases. It alleviates reliance on prior meta-data. We applied IDAM to publicly available datasets from inflammatory bowel disease, melanoma, type 1 diabetes mellitus, and irritable bowel syndrome. The results demonstrated the superior performance of IDAM in inferring disease-associated characteristics compared to existing popular tools. Furthermore, we showcased the high reproducibility of the gene modules inferred by IDAM using independent cohorts with inflammatory bowel disease. We believe that IDAM can be a highly advantageous method for exploring disease-associated microbial characteristics. The source code of IDAM is freely available at https://github.com/OSU-BMBL/IDAM, and the web server can be accessed at https://bmblx.bmi.osumc.edu/idam/.


Assuntos
Diabetes Mellitus Tipo 1 , Doenças Inflamatórias Intestinais , Humanos , Redes Reguladoras de Genes , Reprodutibilidade dos Testes , Diabetes Mellitus Tipo 1/genética , Doenças Inflamatórias Intestinais/genética , Genes Microbianos
5.
J Med Virol ; 95(8): e29060, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37638381

RESUMO

Human Papillomaviruses (HPVs) are associated with around 5%-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes-E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Infecções por Papillomavirus/genética , Transcriptoma , Oncogenes , Papillomavirus Humano , Diferenciação Celular
6.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645794

RESUMO

Human Papillomaviruses (HPVs) are associated with around 5-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes - E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.

7.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645917

RESUMO

Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduced MarsGT: Multi-omics Analysis for Rare population inference using Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperformed existing tools in identifying rare cells across 400 simulated and four real human datasets. In mouse retina data, it revealed unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detected an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identified a rare MAIT-like population impacted by a high IFN-I response and revealed the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.

8.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502961

RESUMO

The uptake of Ca2+ into and extrusion of calcium from the mitochondrial matrix, regulated by the mitochondrial Ca2+ uniporter (MCU), is a fundamental biological process that has crucial impacts on cellular metabolism, signaling, growth and survival. Herein, we report that the embryonic lethality of Mcu-deficient mice is fully rescued by orally supplementing ferroptosis inhibitor lipophilic antioxidant vitamin E and ubiquinol. Mechanistically, we found MCU promotes acetyl-CoA-mediated GPX4 acetylation at K90 residue, and K90R mutation impaired the GPX4 enzymatic activity, a step that is crucial for ferroptosis. Structural analysis supports the possibility that GPX4 K90R mutation alters the conformational state of the molecule, resulting in disruption of a salt bridge formation with D23, which was confirmed by mutagenesis studies. Finally, we report that deletion of MCU in cancer cells caused a marked reduction in tumor growth in multiple cancer models. In summary, our study provides a first direct link between mitochondrial calcium level and sustained GPX4 enzymatic activity to regulate ferroptosis, which consequently protects cancer cells from ferroptosis.

9.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292990

RESUMO

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.

10.
Nat Commun ; 14(1): 964, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810839

RESUMO

Single-cell multi-omics (scMulti-omics) allows the quantification of multiple modalities simultaneously to capture the intricacy of complex molecular mechanisms and cellular heterogeneity. Existing tools cannot effectively infer the active biological networks in diverse cell types and the response of these networks to external stimuli. Here we present DeepMAPS for biological network inference from scMulti-omics. It models scMulti-omics in a heterogeneous graph and learns relations among cells and genes within both local and global contexts in a robust manner using a multi-head graph transformer. Benchmarking results indicate DeepMAPS performs better than existing tools in cell clustering and biological network construction. It also showcases competitive capability in deriving cell-type-specific biological networks in lung tumor leukocyte CITE-seq data and matched diffuse small lymphocytic lymphoma scRNA-seq and scATAC-seq data. In addition, we deploy a DeepMAPS webserver equipped with multiple functionalities and visualizations to improve the usability and reproducibility of scMulti-omics data analysis.


Assuntos
Benchmarking , Análise de Dados , Reprodutibilidade dos Testes , Análise por Conglomerados , Fontes de Energia Elétrica , Análise de Célula Única
11.
Adv Sci (Weinh) ; 10(11): e2206151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794291

RESUMO

Accurately predicting peptide secondary structures remains a challenging task due to the lack of discriminative information in short peptides. In this study, PHAT is proposed, a deep hypergraph learning framework for the prediction of peptide secondary structures and the exploration of downstream tasks. The framework includes a novel interpretable deep hypergraph multi-head attention network that uses residue-based reasoning for structure prediction. The algorithm can incorporate sequential semantic information from large-scale biological corpus and structural semantic information from multi-scale structural segmentation, leading to better accuracy and interpretability even with extremely short peptides. The interpretable models are able to highlight the reasoning of structural feature representations and the classification of secondary substructures. The importance of secondary structures in peptide tertiary structure reconstruction and downstream functional analysis is further demonstrated, highlighting the versatility of our models. To facilitate the use of the model, an online server is established which is accessible via http://inner.wei-group.net/PHAT/. The work is expected to assist in the design of functional peptides and contribute to the advancement of structural biology research.


Assuntos
Algoritmos , Peptídeos , Estrutura Secundária de Proteína , Peptídeos/química
12.
Trends Microbiol ; 31(7): 707-722, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36841736

RESUMO

The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia/métodos , Biologia Computacional/métodos , Previsões
13.
Nat Commun ; 13(1): 6494, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310235

RESUMO

Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful. We propose scDEAL, a deep transfer learning framework for cancer drug response prediction at the single-cell level by integrating large-scale bulk cell-line data. The highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with scRNA-seq data and transferring the model trained on bulk RNA-seq data to predict drug responses in scRNA-seq. Another feature of scDEAL is the integrated gradient feature interpretation to infer the signature genes of drug resistance mechanisms. We benchmark scDEAL on six scRNA-seq datasets and demonstrate its model interpretability via three case studies focusing on drug response label prediction, gene signature identification, and pseudotime analysis. We believe that scDEAL could help study cell reprogramming, drug selection, and repurposing for improving therapeutic efficacy.


Assuntos
Antineoplásicos , Neoplasias , Análise de Sequência de RNA , Análise de Célula Única , Perfilação da Expressão Gênica , RNA-Seq , Aprendizado de Máquina , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
14.
Nat Immunol ; 23(11): 1588-1599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266363

RESUMO

Dysfunctional CD8+ T cells, which have defective production of antitumor effectors, represent a major mediator of immunosuppression in the tumor microenvironment. Here, we show that SUSD2 is a negative regulator of CD8+ T cell antitumor function. Susd2-/- effector CD8+ T cells showed enhanced production of antitumor molecules, which consequently blunted tumor growth in multiple syngeneic mouse tumor models. Through a quantitative mass spectrometry assay, we found that SUSD2 interacted with interleukin (IL)-2 receptor α through sushi domain-dependent protein interactions and that this interaction suppressed the binding of IL-2, an essential cytokine for the effector functions of CD8+ T cells, to IL-2 receptor α. SUSD2 was not expressed on regulatory CD4+ T cells and did not affect the inhibitory function of these cells. Adoptive transfer of Susd2-/- chimeric antigen receptor T cells induced a robust antitumor response in mice, highlighting the potential of SUSD2 as an immunotherapy target for cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Microambiente Tumoral
15.
Comput Struct Biotechnol J ; 20: 4600-4617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090815

RESUMO

Spatially resolved transcriptomics provides a new way to define spatial contexts and understand the pathogenesis of complex human diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonation often cannot be revealed and localized due to the limited capacities of associating spatial information. We present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given inputs such as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with a spatial retained graph neural network from spatial transcriptomics. The embedding is then visualized by mapping into color channels in an RGB image and segmented with a supervised convolutional neural network model. Based on a benchmark of 10x Genomics Visium spatial transcriptomics datasets on the human and mouse cortex, RESEPT infers and visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize cortex layers and cell types based on pre-defined region- or cell-type-enriched genes and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer's disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer applications.

16.
ACS Omega ; 7(35): 31205-31217, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092598

RESUMO

In this work, the effects of coal-fired flue gas components (O2, CO2, SO2, and NO) on the Hg0 removal by the promising mercury removal adsorbent mechanochemical S-modified petroleum coke were characterized and analyzed in terms of the Hg0 removal efficiency, mercury adsorption capacity, and mercury mass balance. The results show that the mechanochemical S-modified petroleum coke with a theoretical sulfur content of 21% (named TSC-21) is the best candidate for mercury removal based on the Hg0 removal efficiency, Hg0 removal capacity, and difference ratio of Hg0 removal capacity (anti-interference ability) in the basic and full-component simulated flue gas atmosphere (N2 + O2 + CO2, N2 + O2 + CO2 + SO2 + NO). The maximum value (MV) and stable value (SV) of the Hg0 removal efficiency of TSC-21 in the basic simulated flue gas atmosphere are 99.25% (MV) and 91.17% (SV), respectively. O2, CO2, and NO all promote the Hg0 removal by the adsorbent, but they benefit the Hg0 oxidation while inhibiting the Hg0 adsorption. The promoting effect of O2 on the Hg0 removal by TSC-21 is affected by the reaction time, which is especially obvious after 1 min. The presence of SO2 inhibits the oxidation and adsorption of Hg0, which in turn reduces the Hg0 removal performance of the adsorbent. The improving effects on the oxidative escape of Hg0 by CO2 is higher than that by NO and O2. TSC-21 acts more as an oxidant than an adsorbent for Hg0 removal.

17.
Comput Struct Biotechnol J ; 20: 3053-3058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782725

RESUMO

Cis-regulatory motif (motif for short) identification and analyses are essential steps in detecting gene regulatory mechanisms. Deep learning (DL) models have shown substantial advances in motif prediction. In parallel, intuitive and integrative web databases are needed to make effective use of DL models and ensure easy access to the identified motifs. Here, we present DESSO-DB, a web database developed to allow efficient access to the identified motifs and diverse motif analyses. DESSO-DB provides motif prediction results and visualizations of 690 ENCODE human Chromatin Immunoprecipitation sequencing (ChIP-seq) data (including 161 transcription factors (TFs) in 91 cell lines) and 1,677 human ChIP-seq data (including 547 TFs in 359 cell lines) from Cistrome DB using DESSO, which is an in-house developed DL tool for motif prediction. It also provides online motif finding and scanning functions for new ChIP-seq/ATAC-seq datasets and downloadable motif results of the above 690 DECODE datasets, 126 cancer ChIP-seq, 55 RNA Crosslinking-Immunoprecipitation and high-throughput sequencing (CLIP-seq) data. DESSO-DB is deployed on the Google Cloud Platform, providing stabilized and efficient resources freely to the public. DESSO-DB is free and available at http://cloud.osubmi.com/DESSO/.

18.
Nat Commun ; 13(1): 4096, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835751

RESUMO

Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Medula Espinal/patologia
20.
Sci Immunol ; 7(73): eabq2630, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35420889

RESUMO

Sex bias exists in the development and progression of nonreproductive organ cancers, but the underlying mechanisms are enigmatic. Studies so far have focused largely on sexual dimorphisms in cancer biology and socioeconomic factors. Here, we establish a role for CD8+ T cell-dependent antitumor immunity in mediating sex differences in tumor aggressiveness, which is driven by the gonadal androgen but not sex chromosomes. A male bias exists in the frequency of intratumoral antigen-experienced Tcf7/TCF1+ progenitor exhausted CD8+ T cells that are devoid of effector activity as a consequence of intrinsic androgen receptor (AR) function. Mechanistically, we identify a novel sex-specific regulon in progenitor exhausted CD8+ T cells and a pertinent contribution from AR as a direct transcriptional transactivator of Tcf7/TCF1. The T cell-intrinsic function of AR in promoting CD8+ T cell exhaustion in vivo was established using multiple approaches including loss-of-function studies with CD8-specific Ar knockout mice. Moreover, ablation of the androgen-AR axis rewires the tumor microenvironment to favor effector T cell differentiation and potentiates the efficacy of anti-PD-1 immune checkpoint blockade. Collectively, our findings highlight androgen-mediated promotion of CD8+ T cell dysfunction in cancer and imply broader opportunities for therapeutic development from understanding sex disparities in health and disease.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Androgênios , Animais , Diferenciação Celular , Feminino , Masculino , Camundongos , Sexismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA