Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Immunol ; 171: 22-35, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749236

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS: Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS: Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION: This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Interferon-alfa , Lúpus Eritematoso Sistêmico , Camundongos Endogâmicos MRL lpr , Proteínas Proto-Oncogênicas c-maf , Linfócitos T Reguladores , Células Th17 , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/virologia , Células Th17/imunologia , Humanos , Animais , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Linfócitos T Reguladores/imunologia , Camundongos , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Feminino , Adulto , Herpesvirus Humano 4/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Proteínas Proto-Oncogênicas c-maf/genética , Masculino , Diferenciação Celular/imunologia , Progressão da Doença , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Adulto Jovem
2.
J Agric Food Chem ; 72(23): 13228-13239, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810088

RESUMO

Limited alliinase resources cause difficulties in the biosynthesis of thiosulfinates (e.g., allicin), restricting their applications in the agricultural and food industries. To effectively biosynthesize thiosulfinates, this study aimed to excavate bacterial alliinase resources and elucidate their catalytic properties. Two bacterial cystathionine ß-lyases (MetCs) possessing high alliinase activity (>60 U mg -1) toward L-(-)-alliin were identified from Allium sativum rhizosphere isolates. Metagenomic exploration revealed that cystathionine ß-lyase from Bacillus cereus (BcPatB) possessed high activity toward both L-(±)-alliin and L-(+)-alliin (208.6 and 225.1 U mg -1), respectively. Although these enzymes all preferred l-cysteine S-conjugate sulfoxides as substrates, BcPatB had a closer phylogenetic relationship with Allium alliinases and shared several similar features with A. sativum alliinase. Interestingly, the Trp30Ile31Ala32Asp33 Met34 motif in a cuspate loop of BcPatB, especially sites 31 and 32 at the top of the motif, was modeled to locate near the sulfoxide of L-(+)-alliin and is important for substrate stereospecificity. Moreover, the stereoselectivity and activity of mutants I31V and A32G were higher toward L-(+)-alliin than those of mutant I31L/D33E toward L-(-)-alliin. Using bacterial alliinases and chemically synthesized substrates, we obtained thiosulfinates with high antimicrobial and antinematode activities that could provide insights into the protection of crops and food.


Assuntos
Proteínas de Bactérias , Alho , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Alho/química , Alho/enzimologia , Alho/genética , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus cereus/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Filogenia , Estereoisomerismo , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cinética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/química , Cisteína/análogos & derivados
3.
Stem Cell Rev Rep ; 20(5): 1213-1226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38532032

RESUMO

In recent years, the rapid emergence of 3D organoid technology has garnered significant attention from researchers. These miniature models accurately replicate the structure and function of human tissues and organs, offering more physiologically relevant platforms for cancer research. These intricate 3D structures not only serve as promising models for studying human cancer, but also significantly contribute to the advancement of various potential applications in the field of cancer research. To date, organoids have been efficiently constructed from both normal and malignant tissues originating from patients. Using such bioengineering platforms, simulations of infections and cancer processes, mutations and carcinogenesis can be achieved, and organoid technology is also expected to facilitate drug testing and personalized therapies. In conclusion, regenerative medicine has the potential to enhance organoid technology and current transplantation treatments by utilizing genetically identical healthy organoids as substitutes for irreversibly deteriorating diseased organs. This review explored the evolution of cancer organoids and emphasized the significant role these models play in fundamental research and the advancement of personalized medicine in oncology.


Assuntos
Neoplasias , Organoides , Medicina de Precisão , Humanos , Organoides/efeitos dos fármacos , Organoides/patologia , Medicina de Precisão/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/genética , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/métodos
4.
Virus Res ; 341: 199324, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242290

RESUMO

Respiratory system diseases caused by respiratory viruses are common and exert tremendous pressure on global healthcare system. In our previous studies, we found that Long non-coding RNA NRAV (Lnc NRAV) and its target molecule Rab5c plays a significant role in respiratory virus infection. However, the mechanism by which Rab5c affects virus replication remains unclear. Rab5c, a protein mainly localized on the cell membranes and in early endosomes and phagosomes, participates in endocytosis mediated by clathrin and regulates the fusion of early endosome, maturation of early phagosomes, and autophagy. Therefore, we inferred that Rab5c impacts virus replication, which might be related to endocytosis or autophagy. We selected RSV (respiratory syncytial virus) as a representative enveloped virus and ADV (Adenovirus) as a representative non-enveloped virus to explore the possible mechanism of RSV and ADV replication promoted by Rab5c in A549 cells and in Rab5c-overexpressing mice. Here, we confirmed that the activated Rab5c promotes RSV and ADV replication and the inactivated Rab5c inhibits their replication. However, Rab5c promoting RSV and ADV replication is not mediated by endocytosis rather by autophagy in respiratory epithelial cells. Our study showed that Rab5c upregulates LC3-Ⅱ (microtubule-associated protein 1 light chain 3 beta) protein expression levels by interacting with Beclin1, a key autophagy molecule, which can induce autophagy and promote replication of ADV and RSV. This study enriches the understanding of the interaction between respiratory viruses and Rab5c, providing new insights for virus prevention and treatment.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Vírus Sincicial Respiratório Humano/genética , Células Epiteliais , Adenoviridae/genética , Autofagia , Replicação Viral
5.
Biosens Bioelectron ; 247: 115921, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104390

RESUMO

The oncometabolite D-2-hydroxyglutarate (D-2-HG) has emerged as a valuable biomarker in tumors with isocitrate dehydrogenase (IDH) mutations. Efficient detection methods are required and rapid intraoperative determination of D-2-HG remains a huge challenge. Herein, D-2-HG dehydrogenase from Achromobacter xylosoxidans (AX-D2HGDH) was found to have high substrate specificity. AX-D2HGDH dehydrogenizes D-2-HG and reduces flavin adenine dinucleotide (FAD) bound to the enzyme. Interestingly, the dye resazurin can be taken as another substrate to restore FAD. AX-D2HGDH thus catalyzes a bisubstrate and biproduct reaction: the dehydrogenation of D-2-HG to 2-ketoglutarate and simultaneous reduction of non-fluorescent resazurin to highly fluorescent resorufin. According to steady-state analysis, a ping-pong bi-bi mechanism has been concluded. The Km values for resazurin and D-2-HG were determined as 0.56 µM and 10.93 µM, respectively, suggesting high affinity to both substrates. On the basis, taking AX-D2HGDH and resazurin as recognition and fluorescence transducing element, a D-2-HG biosensor (HGAXR) has been constructed. HGAXR exhibits high sensitivity, accuracy and specificity for D-2-HG in different biological samples. With the aid of HGAXR and the matched low-cost palm-size detecting device, D-2-HG levels in frozen sections of resected brain tumor tissues can be measured in a direct, simple and accurate manner with a fast detection (1-3 min). As the technique of frozen section is familiar to surgeons and pathologists, HGAXR and the portable device can be easily integrated into the current workflow, having potential to provide rapid intraoperative pathology for IDH mutation status and guide decision-making during surgery.


Assuntos
Técnicas Biossensoriais , Isocitrato Desidrogenase , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Secções Congeladas , Flavina-Adenina Dinucleotídeo , Mutação
6.
Front Cell Infect Microbiol ; 13: 1324727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264727

RESUMO

Background: We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5ß1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5ß1 axis a common event in respiratory epithelial cells? Methods: We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results: We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5ß1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin ß1 chain, is highly expressed upon activation of integrin α5ß1, which in turn up-regulates autophagy. Conclusions: Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5ß1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5ß1 in this autophagy pathway.


Assuntos
Fibronectinas , Listeria monocytogenes , Integrina alfa5beta1 , Staphylococcus aureus , Triptofano Oxigenase , Autofagia , Células Epiteliais
7.
mBio ; 13(6): e0262422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36218368

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Glicerol/metabolismo , Fatores de Virulência/genética , Fibrose Cística/microbiologia , Antibacterianos/metabolismo , Canamicina/metabolismo , Oxirredutases/metabolismo , Infecções por Pseudomonas/microbiologia
8.
Pharmacol Res ; 175: 106036, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920118

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy is a late-model of immune cell therapy that has been shown to be effective in refractory/recurrent B-cell leukemia and lymphoma. Compared with the traditional anti-tumor methods, CAR-T cell therapy has the advantages of higher specificity, stronger lethality and longer-lasting efficacy. Although CAR-T cells have made significant progress in the treatment of hematologic malignancies, diverse difficulties remain in the treatment of solid tumors, including immune escape due to tumor antigen heterogeneity, preventing entry or limiting the persistence of CAR-T cells by physical or cytokine barriers and along with other immunosuppressive molecule and cells in the tumor microenvironment (TME). Otherwise, the intracellular signaling of CAR also impact on CAR-T cells persistence. Appropriate modification of intracellular costimulatory molecular signal in the structure of CAR or coexpression of CAR and cytokines can provide a way to enhance CAR-T cells activity. Additionally, CAR-T cells dysfunction due to T cell exhaustion is associated with multi-factors, especially transcription factors, such as c-Jun, NR4A. Engineering CAR-T cells to coexpress or knockout transcription factors in favor of TCM memory CAR-T cells differentiation was proved to prolonged the survival of CAR-T cells. Finally, combination of CAR-T cells with oncolytic viruses, nanoparticles or immune checkpoint inhibitors provides an effective measure to improve CAR-T cells function. Here, we discuss all of these advances and challenges and review promising strategies for treating solid tumors. In particular, we also highlight that CAR-T cells have enormous potential to be used in combination with other immunotherapies.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Tolerância Imunológica , Neoplasias/imunologia , Linfócitos T/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia
9.
Nat Commun ; 12(1): 7108, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876568

RESUMO

D-2-Hydroxyglutarate (D-2-HG) is a metabolite involved in many physiological metabolic processes. When D-2-HG is aberrantly accumulated due to mutations in isocitrate dehydrogenase or D-2-HG dehydrogenase, it functions in a pro-oncogenic manner and is thus considered a therapeutic target and biomarker in many cancers. In this study, DhdR from Achromobacter denitrificans NBRC 15125 is identified as an allosteric transcriptional factor that negatively regulates D-2-HG dehydrogenase expression and responds to the presence of D-2-HG. Based on the allosteric effect of DhdR, a D-2-HG biosensor is developed by combining DhdR with amplified luminescent proximity homogeneous assay (AlphaScreen) technology. The biosensor is able to detect D-2-HG in serum, urine, and cell culture medium with high specificity and sensitivity. Additionally, this biosensor is used to identify the role of D-2-HG metabolism in lipopolysaccharide biosynthesis of Pseudomonas aeruginosa, demonstrating its broad usages.


Assuntos
Oxirredutases do Álcool/metabolismo , Técnicas Biossensoriais , Regulação da Expressão Gênica , Glutaratos/química , Glutaratos/metabolismo , Achromobacter denitrificans/enzimologia , Achromobacter denitrificans/genética , Achromobacter denitrificans/metabolismo , Oxirredutases do Álcool/genética , Bactérias/metabolismo , Células HEK293 , Humanos , Isocitrato Desidrogenase , Redes e Vias Metabólicas , Mutação , Neoplasias , Fatores de Transcrição
10.
Nat Commun ; 12(1): 3619, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131130

RESUMO

L-2-Hydroxyglutarate (L-2-HG) plays important roles in diverse physiological processes, such as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance and intensively studied metabolism, regulation of L-2-HG metabolism remains poorly understood and none of regulator specifically responded to L-2-HG has been identified. Based on bacterial genomic neighborhood analysis of the gene encoding L-2-HG oxidase (LhgO), LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in this study. LhgR is demonstrated to recognize L-2-HG as its specific effector molecule, and this allosteric transcription factor is then used as a biorecognition element to construct an L-2-HG-sensing FRET sensor. The L-2-HG sensor is able to conveniently monitor the concentrations of L-2-HG in various biological samples. In addition to bacterial L-2-HG generation during carbon starvation, biological function of the L-2-HG dehydrogenase and hypoxia induced L-2-HG accumulation are also revealed by using the L-2-HG sensor in human cells.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Regulação da Expressão Gênica , Glutaratos/metabolismo , Proteínas de Bactérias/genética , Líquidos Corporais , Escherichia coli , Células HEK293 , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Pseudomonas putida/genética , Fatores de Transcrição/metabolismo
11.
Front Mol Biosci ; 8: 663987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981724

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high morbidity and mortality worldwide. So far, smoking is still its leading cause. The characteristics of COPD are emphysema and airway remodeling, as well as chronic inflammation, which were predominated by macrophages. Some studies have reported that macrophages were involved in emphysema and chronic inflammation, but whether there is a link between airway remodeling and macrophages remains unclear. In this study, we found that both acute and chronic cigarette smoke exposure led to an increase of macrophages in the lung and a decrease of ciliated cells in the airway epithelium of a mouse model. The results of in vitro experiments showed that the ciliary protein (ß-tubulin-IV) levels of BEAS-2B cells could be inhibited when co-cultured with human macrophage line THP-1, and the inhibitory effect was augmented with the stimulation of cigarette smoke extract (CSE). Based on the results of transcriptome sequencing, we focused on the protein, bone morphogenetic protein-2 (BMP-2), secreted by the macrophage, which might mediate this inhibitory effect. Further studies confirmed that BMP-2 protein inhibited ß-tubulin-IV protein levels of BEAS-2B cells under the stimulation of CSE. Coincidentally, this inhibitory effect could be nearly blocked by the BMP receptor inhibitor, LDN, or could be interfered with BMP-2 siRNA. This study suggests that activation and infiltration of macrophages in the lung induced by smoke exposure lead to a high expression of BMP-2, which in turn inhibits the ciliary protein levels of the bronchial epithelial cells, contributing to the remodeling of airway epithelium, and aggravates the development of COPD.

12.
mBio ; 11(3)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518187

RESUMO

Group A Streptococcus (GAS), one of the most common extracellular pathogens, has been reported to invade epithelial and endothelial cells. Our results reveal that M1 GAS strain SF370 can be effectively eliminated by respiratory epithelial cells. Emerging evidence indicates that autophagy is an important strategy for nonphagocytes to eliminate intracellular bacteria. Upon pathogen recognition, cell surface receptors can directly trigger autophagy, which is a critical step in controlling infection. However, the mechanisms of how cells sense invading bacteria and use this information specifically to trigger autophagy remain unclear. In this study, we stimulated cells and infected mice with M and FbaA mutants of M1 GAS strain SF370 or with purified M and FbaA proteins (two critical surface structural proteins of GAS), and found that only FbaA protein was involved in autophagy induction. Furthermore, the FbaA protein induced autophagy independent of common pattern recognition receptors (such as Toll-like receptors); rather, it relies on binding to integrin α5ß1 expressed on the cell surface, which is mediated by extracellular matrix protein fibronectin (Fn). The FbaA-Fn-integrin α5ß1 complex activates Beclin-1 through the mTOR-ULK1-Beclin-1 pathway, which enables the Beclin-1/Vps34 complex to recruit Rab7 and, ultimately, to promote the formation of autophagosomes. By knocking down integrin α5ß1, Fn, Atg5, Beclin-1, and ULK1 in Hep2 cells and deleting Atg5 or integrin α5ß1 in mice, we reveal a novel role for integrin α5ß1 in inducing autophagy. Our study demonstrates that integrin α5ß1, through interacting with pathogen components, initiates effective host innate immunity against invading intracellular pathogens.IMPORTANCE Autophagy is generally considered a strategy used by the innate immune system to eliminate invasive pathogens through capturing and transferring them to lysosomes. Currently, researchers pay more attention to how virulence factors secreted by GAS regulate the autophagic process. Here, we provide the first evidence that the structural protein FbaA of M1 GAS strain SF370 is a potent inducer of autophagy in epithelial cells. Furthermore, we demonstrate that integrin α5ß1 in epithelial cells in vitro and in vivo acts as a receptor to initiate the signaling for inducing autophagy by binding to FbaA of M1 GAS strain SF370 via Fn. Our study reveals the underlying mechanisms by which pathogens induce Fn-integrin α5ß1 to trigger autophagy in a conserved pattern in epithelial cells.


Assuntos
Autofagia , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Linhagem Celular , Feminino , Fibronectinas/genética , Glicoproteínas/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Imunidade Inata , Espaço Intracelular/microbiologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/fisiopatologia , Streptococcus pyogenes/genética
13.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102886

RESUMO

Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler's (NeST) showed no difference in vivo and in vitro Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus.IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/metabolismo , Células A549 , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Regulação para Baixo , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hibridização in Situ Fluorescente , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas rab5 de Ligação ao GTP/genética
14.
Environ Microbiol Rep ; 10(5): 569-575, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066495

RESUMO

Pseudomonas aeruginosa often establishes a chronic infection in the airways of patients with cystic fibrosis (CF). l-Lactate is the most abundant carbon source in the CF sputum, and l-lactate utilization may be important for P. aeruginosa to survive in the lungs of CF patients. In this study, the key enzymes involved in l-lactate utilization by P. aeruginosa PAO1 were characterized using the synthetic CF sputum medium (SCFM). A highly conserved membrane-bound NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by lldD (PA4771) and a novel flavin-containing membrane-bound l-iLDH encoded by lldA (PA2382) were both found to contribute to l-lactate utilization by P. aeruginosa PAO1. In addition, an lldD and lldA double mutant was incapable of growing in a medium containing l-lactate as the sole carbon source. This study clarifies the mechanism and importance of l-lactate catabolism, and demonstrates the first Pseudomonas spp. expressing two l-lactate-oxidizing enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Flavoproteínas/genética , Humanos , L-Lactato Desidrogenase/genética , Proteínas de Membrana/genética , Mutação , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escarro/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-29868491

RESUMO

Group A streptococcus (GAS), a common pathogen, is able to escape host immune attack and thus survive for longer periods of time. One of the mechanisms used by GAS is the upregulated expression of immunosuppressive molecules, which leads to a reduction in the production of inflammatory cytokines in immune cells. In the present study, we found that macrophages produced lower levels of proinflammatory cytokines (IL-1ß, TNF-α, IL-6) when challenged with GAS than they did when challenged with Escherichia coli (E. coli). Simultaneously, in a mouse model of lung infection, GAS appeared to induce a weaker inflammatory response compared to E. coli. Our data also indicated that the expression of the A20 transcriptional regulator was higher in GAS-infected macrophages than that in macrophages infected with E. coli, and that high expression of A20 correlated with a reduction in the production of TRAF6. SiRNA targeting of A20 led to the increased production of TRAF6, IL-1ß, TNF-α, and IL-6, suggesting that A20 inhibits synthesis of these key proinflammatory cytokines. We also investigated the pathway underlying A20 production and found that the synthesis of A20 depends on My88, and to a lower extent on TNFR1. Finally, we showed a significant reduction in the expression of A20 in macrophages stimulated by M protein-mutant GAS, however, a speB-GAS mutant, which is unable to degrade M protein, induced a greater level of A20 production than wild type GAS. Collectively, our data suggested that M protein of GAS was responsible for inducing A20 expression in macrophages, which in turn down-regulates the inflammatory cytokine response in order to facilitate GAS in evading immune surveillance and thus prolong survival in the host.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Pulmão/imunologia , Macrófagos/imunologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pyogenes/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/imunologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/microbiologia , Células RAW 264.7 , Streptococcus pyogenes/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386287

RESUMO

Respiratory syncytial virus (RSV) is the main cause of acute lower respiratory tract infection (ALRI) in children worldwide. Virus-host interactions affect the progression and prognosis of the infection. Autophagy plays important roles in virus-host interactions. Respiratory epithelial cells serve as the front line of host defense during RSV infection, However, it is still unclear how they interact with RSV. In this study, we found that RSV induced autophagy that favored RSV replication and exacerbated lung pathology in vivo Mechanistically, RSV induced complete autophagy flux through reactive oxygen species (ROS) generation and activation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK-MTOR) signaling pathway in HEp-2 cells. Furthermore, we evaluated the functions of autophagy in RSV replication and found that RSV replication was increased in HEp-2 cells treated with rapamycin but decreased remarkably in cells treated with 3-methylademine (3-MA) or wortmannin. Knockdown key molecules in the autophagy pathway with short hairpinp RNA (shRNA) against autophagy-related gene 5 (ATG5), autophagy-related gene 7 (ATG7), or BECN1/Beclin 1 or treatment with ROS scavenger N-acetyl-l-cysteine (NAC) and AMPK inhibitor (compound C) suppressed RSV replication. 3-MA or shATG5/BECN1 significantly decreased cell viability and increased cell apoptosis at 48 hours postinfection (hpi). Blocking apoptosis with Z-VAD-FMK partially restored virus replication at 48 hpi. Those results provide strong evidence that autophagy may function as a proviral mechanism in a cell-intrinsic manner during RSV infection.IMPORTANCE An understanding of the mechanisms that respiratory syncytial virus utilizes to interact with respiratory epithelial cells is critical to the development of novel antiviral strategies. In this study, we found that RSV induces autophagy through a ROS-AMPK signaling axis, which in turn promotes viral infection. Autophagy favors RSV replication through blocking cell apoptosis at 48 hpi. Mechanistically, RSV induces mitophagy, which maintains mitochondrial homeostasis and therefore decreases cytochrome c release and apoptosis induction. This study provides a novel insight into this virus-host interaction, which may help to exploit new antiviral treatments targeting autophagy processes.


Assuntos
Apoptose , Autofagia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral , Proteínas Quinases Ativadas por AMP/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Humanos , Infecções por Vírus Respiratório Sincicial/patologia , Serina-Treonina Quinases TOR/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(36): E7574-E7582, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827360

RESUMO

l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas stutzeri/metabolismo , Serina/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Homeostase/fisiologia , Ácidos Cetoglutáricos/metabolismo , Oxirredução
18.
Oncol Rep ; 38(3): 1561-1568, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28713905

RESUMO

The present study was designed to investigate the antitumor effects of Lactobacillus and the potential mechanisms. Cell Counting Kit-8 (CCK-8) assays were carried out to determine suitable doses for investigating the inhibitory effect of lactobacilli on cell migration ability of HeLa and U14 cells in vitro. In addition, western blot assays were performed to investigate the possible mechanisms corresponding to its antitumor effects. Furthermore, a xenograft mouse model was established for investigating the E-cadherin expression in tumor tissues after treatment with lactobacilli. Our results showed that live lactobacilli [multiplicity of infection (MOI) of 1,000:1] significantly possessed inhibitory effects on cell migration ability of cervical cancer cells. Lactobacilli (MOI: 1,000:1) significantly upregulated E-cadherin expressions in HeLa and U14 cells (p<0.05). On the contrary, our results showed that inactivated lactobacilli could not affect the E-cadherin expression levels in HeLa and U14 cells. Similar to the western blot assay, immunohistochemistry results also indicated that lactobacilli treatment significantly upregulated E-cadherin in tumor tissues (p<0.05). In conclusion, our results above suggest that lactobacilli have the potential for inhibiting the migratory ability of cervical cancer cell lines, and the possible pharmacological mechanism may be closely related to the upregulation of E-cadherin.


Assuntos
Caderinas/metabolismo , Movimento Celular/fisiologia , Lactobacillus/fisiologia , Carga Tumoral/fisiologia , Regulação para Cima/fisiologia , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Chron Obstruct Pulmon Dis ; 12: 1309-1324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496315

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. METHODS: A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. RESULTS: The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. CONCLUSION: These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model.


Assuntos
Anti-Inflamatórios/administração & dosagem , Fumar Cigarros/efeitos adversos , Hidrogênio/administração & dosagem , Pulmão/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Fumaça/efeitos adversos , Administração por Inalação , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/ultraestrutura , Masculino , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos Sprague-Dawley , Função Ventricular Esquerda , Função Ventricular Direita/efeitos dos fármacos
20.
Oncotarget ; 7(23): 33796-808, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183919

RESUMO

Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity. During chronic HCV infection, HCV core protein is implicated in deregulating cytokine expression that associates with chronic inflammation. A20 is known as a powerful suppressor in cytokine signaling, in this study, we explored the A20 expression in macrophages induced by HCV core protein and the involved signaling pathways. Results demonstrated that HCV core protein induced A20 expression in macrophages. Silencing A20 significantly enhanced the secretion of IL-6, IL-1ß and TGF-ß1, but not IL-8 and TNF. Additionally, HCV core protein interacted with gC1qR, but not TLR2, TLR3 and TLR4 in pull-down assay. Silencing gC1qR abrogated core-induced A20 expression. Furthermore, HCV core protein activated MAPK, NF-κB and PI3K/AKT pathways in macrophages. Inhibition of P38, JNK and NF-κB but not ERK and AKT activities greatly reduced the A20 expression. In conclusion, the study suggests that HCV core protein ligates gC1qR to induce A20 expression in macrophages via P38, JNK and NF-κB signaling pathways, which leads to a low-grade chronic inflammation during HCV infection. It represents a novel mechanism by which HCV usurps the host for persistence.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Hepacivirus/metabolismo , Hepatite C Crônica/metabolismo , Macrófagos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Core Viral/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Proteínas Mitocondriais/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA