Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(8): 1965-1980, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38454904

RESUMO

Many studies suggest that tumor microbiome closely relates to the oncogenesis and anti-tumor responses in multiple cancer types (e.g., colorectal cancer (CRC), breast cancer, lung cancer and pancreatic cancer), thereby raising an emerging research area of bacteria-related tumor therapy. Nanomaterials have long been used for both cancer and bacterial infection treatment, holding great potential for bacteria-related tumor therapy. In this review, we summarized recent progress in nanomaterials for bacteria-related tumor therapy. We focus on the types and mechanisms of pathogenic bacteria in the development and promotion of cancers and emphasize how nanomaterials work. We also briefly discuss the design principles and challenges of nanomaterials for bacteria-related tumor therapy. We hope this review can provide some insights into this emerging and rapidly growing research area.


Assuntos
Neoplasias Pulmonares , Nanoestruturas , Neoplasias Pancreáticas , Humanos , Bactérias , Transformação Celular Neoplásica , Nanoestruturas/uso terapêutico
2.
Adv Mater ; 36(19): e2309927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387609

RESUMO

Cytokines are powerful in cancer immunotherapy, however, their therapeutic potential is limited by the severe systemic toxicity. Here a potent strategy to reduce the toxicity of systemic cytokine therapy by delivering its denatured form using a finely designed nanochaperone, is described. It is demonstrated that even if the denatured protein cargos are occasionally released under normal physiological conditions they are still misfolded, while can effectively refold into native states and release to function in tumor microenvironment. Consequently, the systemic toxicity of cytokines is nearly completely overcome. Moreover, an immunogenic cell death (ICD)-inducing chemotherapeutic is further loaded and delivered to tumor using this nanochaperone to trigger the release of tumor-associated antigens (TAAs) that are subsequently captured in situ by nanochaperone and then reflows into lymph nodes (LNs) to promote antigen cross-presentation. This optimized personalized nanochaperone-vaccine demonstrates unprecedented suppressive effects against large, advanced tumors, and in combination with immune checkpoint blockade (ICB) therapy results in a significant abscopal effect and inhibition of postoperative tumor recurrence and metastasis. Hence, this approach provides a simple and universal delivery strategy to reduce the systemic toxicities of cytokines, as well as provides a robust personalized cancer vaccination platform, which may find wide applications in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Interleucina-12 , Nanoestruturas , Animais , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/química , Linhagem Celular Tumoral , Morte Celular Imunogênica/efeitos dos fármacos , Imunoterapia/métodos , Interleucina-12/química , Interleucina-12/metabolismo , Interleucina-12/toxicidade , Nanopartículas/química , Nanoestruturas/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Dobramento de Proteína , Microambiente Tumoral/efeitos dos fármacos
3.
Small Methods ; 8(3): e2301309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018349

RESUMO

Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Nanomedicina , Microambiente Tumoral
5.
Artigo em Inglês | MEDLINE | ID: mdl-36916659

RESUMO

Fusobacterium nucleatum (Fn) has long been found to be related to colorectal cancer (CRC), which could promote colorectal tumor progression and cause cancer resistance to chemotherapy. Great efforts have been made to understand the relationship between Fn and CRC, but how to efficiently eliminate intratumoral Fn and overcome chemoresistance remains a critical challenge. Here, an active tumor-targeting acidity-responsive nanomaterial toward eliminating intratumoral Fn is developed for enhancing the treatment of cancer. Lauric acid and phenylboric acid are conjugated to oligomethyleneimine to form OLP followed by interacting with oxaliplatin prodrug-modified polyglycidyl ether (PP) to obtain the OLP/PP nanoassembly. The nanoassembly shows good structural stability under the simulated physiological conditions and has a pH-responsive drug release in an acidic tumor microenvironment. More attractively, the nanoassembly can specifically target the tumor cell, guide cellular uptake, and efficiently eliminate tumor-resident extracellular and intracellular Fn. Through the on-site drug delivery, the nanoassembly can overcome chemoresistance and significantly inhibit tumor growth. Both in vitro and vivo studies show that the prepared nanoassembly presents good biocompatibility. Therefore, this biocompatible nanoassembly possessing efficient antibacterial and antitumor activities provides new promise for the therapy of bacterial infected tumors.

6.
Mater Horiz ; 10(2): 361-392, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541078

RESUMO

Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Vacinação , Vacinas de Subunidades Antigênicas , Nanopartículas/química , Neoplasias/terapia
7.
Small Methods ; 7(5): e2201051, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36228110

RESUMO

Despite unprecedented successes of antibody-based cancer immunotherapy, the serious side effects and rapid clearance following systemic administration remain big challenges to realize its full potential. At the same time, combination immunotherapy using multiple antibodies has shown particularly promising in cancer treatment. It is noticed that the working mechanisms of natural holdase and foldase chaperone are desirable to overcome the limitations of therapeutic antibodies. Holdase chaperone stabilizes unfolded client and prevents it from activation and degradation, while foldase chaperone assists unfolded client to its native state to function. Here a holdase/foldase mimetic nanochaperone (H/F-nChap) to co-delivery two types of monoclonal antibodies (mAbs), αCD16 and αPDL1, and resiquimod (R848) is developed, which significantly improves cancer immunotherapy. The H/F-nChap presents holdase activity in blood and normal tissues that hides and protects mAbs from unnecessary targeted activation and degradation, thereby prolonging blood circulation and reducing immunotoxicity in vivo. Furthermore, H/F-nChap switches to foldase activity in the tumor microenvironment that exposes mAbs and releases R848 to enhance the engagement between NK cells and tumor cells and promote immune activation, respectively. The H/F-nChap represents a strategy for safe and spatiotemporal delivery of multiple mAbs, providing a promising platform for improved cancer immunotherapy.


Assuntos
Anticorpos Monoclonais , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Neoplasias/terapia
8.
Small ; 18(32): e2203100, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843873

RESUMO

Personalized cancer vaccination using nanomaterials holds great potential for cancer immunotherapy. Here, a nanochaperone (PBA-nChap) is tailored for in situ capture of tumor-associated antigens (TAAs) to improve cancer immunotherapy. The PBA-nChap is capable of i) efficiently capturing TAAs in situ; ii) protecting TAAs from degradation; iii) transporting TAAs to antigen-presenting cells and promoting cross-presentation. Intratumor injection of PBA-nChap in combination with pretreatment with photodynamic therapy (PDT) significantly enhances immune response and exhibits excellent antitumor efficacy. Moreover, nanovaccine prepared by simply co-culturing PBA-nChap with tumor cell fragments from surgery resected primary tumor in vitro synergized with immune checkpoint blockade (ICB) therapy can effectively inhibit tumor recurrence and metastasis after an operation. This work provides a promising platform for personalized cancer vaccination.


Assuntos
Vacinas Anticâncer , Neoplasias , Fotoquimioterapia , Animais , Antígenos de Neoplasias , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia
9.
Adv Mater ; 32(3): e1805945, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31045287

RESUMO

Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non-native proteins. In the past few decades, efforts have been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone-mimetic materials are discussed.


Assuntos
Materiais Biocompatíveis/química , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Materiais Biocompatíveis/metabolismo , Humanos , Hidrogéis/química , Micelas , Chaperonas Moleculares/química , Nanopartículas/química , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Proteínas/química
10.
Nano Lett ; 19(2): 674-683, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30444372

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible brain disorder. Recent studies revealed the pivotal role of ß-amyloid (Aß) in AD. However, there is no conclusive indication that the existing therapeutic strategies exerted any effect on the mitigation of Aß-induced neurotoxicity and the elimination of Aß aggregates simultaneously in vivo. Herein, we developed a novel nanocomposite that can eliminate toxic Aß aggregates and mitigate Aß-induced neurotoxicity in AD mice. This nanocomposite was designed to be a small-sized particle (14 ± 4 nm) with Aß-binding peptides (KLVFF) integrated on the surface. The nanocomposite was prepared by wrapping a protein molecule with a cross-linked KLVFF-containing polymer layer synthesized by in situ polymerization. The presence of the nanocomposite remarkably changed the morphology of Aß aggregates, which led to the formation of Aß/nanocomposite coassembled nanoclusters instead of Aß oligomers. With the reduction of the pathological Aß oligomers, the nanocomposites attenuated the Aß-induced neuron damages, regained endocranial microglia's capability to phagocytose Aß, and eventually protected hippocampal neurons against apoptosis. Thus, we anticipate that the small-sized nanocomposite will potentially offer a feasible strategy in the development of novel AD treatments.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Nanocompostos/uso terapêutico , Nanomedicina/métodos , Peptídeos/uso terapêutico , Agregação Patológica de Proteínas/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/isolamento & purificação , Animais , Modelos Animais de Doenças , Camundongos , Modelos Moleculares , Nanocompostos/química , Nanocompostos/ultraestrutura , Peptídeos/química , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
11.
ACS Nano ; 11(10): 10549-10557, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28968070

RESUMO

The folding process of a protein is inherently error-prone, owing to the large number of possible conformations that a protein chain can adopt. Partially folded or misfolded proteins typically expose hydrophobic surfaces and tend to form dysfunctional protein aggregates. Therefore, materials that can stabilize unfolded proteins and then efficiently assist them refolding to its bioactive form are of significant interest. Inspired by natural chaperonins, we have synthesized a series of polymeric nanochaperones that can facilitate the refolding of denatured proteins with a high recovery efficiency (up to 97%). Such nanochaperones possess phase-separated structure with hydrophobic microdomains on the surface. This structure allows nanochaperones to stabilize denatured proteins by binding them to the hydrophobic microdomains. We have also investigated the mechanism by which nanochaperones assist the protein refolding and established the design principles of nanochaperones in order to achieve effective recovery of a certain protein from their denatured forms. With a carefully designed composition of the microdomains according to the surface properties of the client proteins, the binding affinity between the hydrophobic microdomain and the denatured protein molecules can be tuned precisely, which enables the self-sorting of the polypeptides and the refolding of the proteins into their bioactive states. This work provides a feasible and effective strategy to recover inclusion bodies to their bioactive forms, which has potential to reduce the cost of the manufacture of recombinant proteins significantly.


Assuntos
Chaperonas Moleculares/química , Muramidase/química , Nanopartículas/química , Redobramento de Proteína , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/metabolismo , Muramidase/síntese química , Muramidase/metabolismo , Tamanho da Partícula , Desnaturação Proteica , Propriedades de Superfície , Temperatura
12.
Chem Asian J ; 9(7): 1808-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24850806

RESUMO

The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition-like thiol-ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent-exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl-substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L-cysteine was evaluated by UV absorption and high-resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent-exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.


Assuntos
Sondas Moleculares/química , Proteínas/química , Técnicas de Química Sintética , Cisteína/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Sondas Moleculares/síntese química , Piridinas/química , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA