Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499677

RESUMO

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Feminino , Imunização Secundária , Pulmão/patologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
2.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379705

RESUMO

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Modelos Animais de Doenças , Células 3T3 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Chlorocebus aethiops , Dependovirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA