Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 608(7923): 569-577, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922514

RESUMO

A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.


Assuntos
Adenosina Desaminase , Predisposição Genética para Doença , Doenças do Sistema Imunitário , Inflamação , Edição de RNA , RNA de Cadeia Dupla , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Elementos Alu/genética , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Estudo de Associação Genômica Ampla , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Inosina/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/genética , Interferons/imunologia , Locos de Características Quantitativas/genética , Edição de RNA/genética , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/metabolismo
2.
Nature ; 461(7265): 823-7, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19812675

RESUMO

RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of approximately 20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-l-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 A crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-l-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg(2+)-dependent 2'-O-methylation mechanism.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metiltransferases/química , Metiltransferases/metabolismo , RNA/metabolismo , Regulação Alostérica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Magnésio/metabolismo , Metilação , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA