Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067377

RESUMO

BACKGROUND: Mutations in the DNA polymerase delta 1 (POLD1) exonuclease domain cause DNA proofreading defects, hypermutation, hereditary colorectal and endometrial cancer, and are predictive of immunotherapy response. Exonuclease activity is carried out by two magnesium cations, bound to four highly conserved, negatively charged amino acids (AA) consisting of aspartic acid at amino acid position 316 (p.D316), glutamic acid at position 318 (p.E318), p.D402, and p.D515 (termed DEDD motif). Germline polymorphisms resulting in charge-discordant AA substitutions in the DEDD motif are classified as variants of uncertain significance (VUSs) by laboratories and thus would be considered clinically inactionable. We hypothesize this mutation class is clinically pathogenic. METHODS: A review of clinical presentation was performed in our index patient with a POLD1(p.D402N) heterozygous proband with endometrial cancer. Implications of this mutation class were evaluated by a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic review, in silico analysis with orthogonal biochemical confirmation, and whole-exome and RNA sequencing analysis of the patient's tumor and engineered cell lines. RESULTS: Our systematic review favored a Mendelian disease mutation class associated with endometrial and colorectal cancers. In silico analysis predicted defective protein function, confirmed by biochemical assay demonstrating loss of nuclease activity. A POLD1-specific mutational signature was found in both the patient's tumor and POLD1(p.D402N) overexpressing cell. Furthermore, paired whole-exome/transcriptome analysis of endometrial tumor demonstrated hypermutation and T cell-inflamed gene expression profile (GEP), which are joint predictive biomarkers for pembrolizumab. Our patient showed a deep, durable response to immune checkpoint inhibitor (ICI). CONCLUSION: Charge-discordant AA substitution in the DEDD motif of POLD1 is detrimental to DNA proofreading and should be reclassified as likely pathogenic and possibly predictive of ICI sensitivity.

2.
Trends Cell Biol ; 33(3): 221-234, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35879148

RESUMO

Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.


Assuntos
Replicação do DNA , Endonucleases Flap , Humanos , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , DNA/metabolismo , Proliferação de Células/genética
3.
Trends Genet ; 38(8): 793-796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491358

RESUMO

Proper function of structure-specific nucleases is key for faithful Okazaki fragment maturation (OFM) process completion. Deregulation of such nucleases leads to aberrant OFM and causes a spectrum of mutations, some of which may confer survival outcomes under specific stresses and serve as attractive targets for therapeutic intervention in human cancers.


Assuntos
Replicação do DNA , DNA , DNA/genética , DNA Polimerase III/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA