Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731608

RESUMO

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Assuntos
Colorimetria , Cobre , Glutationa , Peróxido de Hidrogênio , Nanoestruturas , Glutationa/análise , Glutationa/química , Colorimetria/métodos , Cobre/química , Nanoestruturas/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Porosidade , Oxirredução , Ácidos Ftálicos/química , Humanos , Benzidinas/química , Limite de Detecção
2.
Medicine (Baltimore) ; 103(14): e36758, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579051

RESUMO

BACKGROUND: Compound Kushen injection (CKI) is a mixture of natural compounds extracted from Radix Sophorae and Smilax glabra Roxb. CKI, as an antitumor preparation, plays a vital role in the clinical treatment of lung and gastrointestinal cancers. METHODS: Electronic databases such as the China National Knowledge Infrastructure, Wanfang data, PubMed, EMBASE, and Web of Science were searched for studies. The included studies were evaluated according to the Cochrane Handbook for Systematic Reviews, and meta-analyses were performed using RevMan 5.3 software. RESULTS: Twenty-four randomized controlled trials were selected for meta-analysis. The outcomes showed that CKI adjuvant therapy significantly improved complete remission (CR) and partial response (PR) compared to patients without CKI treatment in gastrointestinal cancers (CR: odds ratio [OR] = 1.76, 95% confidence interval [CI]: [1.29, 2.41], P = .0004; PR: OR = 1.64, 95% CI: [1.29, 2.07], P =.0001), and lung cancer (CR: OR = 2.18, 95% CI: [1.36, 3.51], P = .001); PR: OR = 1.81, 95% CI: [1.31, 2.50], P = .0003). CKI adjuvant therapy had a statistically significant advantage in optimizing life and health status (quality of life [QOL] for gastrointestinal cancers: MD = 1.76, 95% CI: [6.41, 13.80], P = .001, and Karnofsky performance status [KPS] for gastrointestinal cancers: MD = 4.64, 95% CI: [2.72, 6.57], P = .001; KPS for lung cancer: MD = 6.24, 95% CI [1.78, 10.71], P = .006). CKI reduced the pain in lung cancer patients (MD = -1.76, 95% CI: [-1.94, -1.58], P < .00001), increased immunity level (MD = 2.51, 95% CI: [2.17, 2.85], P < .00001), and alleviated the adverse reactions for lung and gastrointestinal cancers (MD = 0.38, 95% CI: (0.32, 0.46); P < .00001). CONCLUSION: The combination of CKI and chemoradiotherapy for treating lung and gastrointestinal cancer has positive effects on short-term and long-term outcomes and has advantages over chemoradiotherapy alone regarding safety and efficacy.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Gastrointestinais , Neoplasias Pulmonares , Humanos , Qualidade de Vida , Revisões Sistemáticas como Assunto , Neoplasias Pulmonares/tratamento farmacológico , Quimiorradioterapia/efeitos adversos , Neoplasias Gastrointestinais/tratamento farmacológico , Antineoplásicos/uso terapêutico , Pulmão
3.
Oncoimmunology ; 13(1): 2344905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659649

RESUMO

T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Camundongos Knockout , Proteínas Mitocondriais , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
4.
Cell Oncol (Dordr) ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015381

RESUMO

BACKGROUND: Accumulating studies have shown that tumors are regulated by nerves, and there is abundant nerve infiltration in the tumor microenvironment. Many solid tumors including breast cancer (BRCA) have different degrees of perineural invasion (PNI), which is closely related to the tumor occurrence and progression. However, the regulatory mechanism of PNI in BRCA remains largely unexplored. METHODS: PNI-related molecular events are analyzed by the RNAseq data of BRCA samples deposited in The Cancer Genome Atlas (TCGA) database. Extracellular matrix (ECM) components within the tumor microenvironment are analyzed by immunohistochemical staining of α-SMA, Sirius red staining, and Masson trichrome staining. Soft and stiff matrix gels, living cell imaging, and dorsal root ganglion (DRG) coculture assay are used to monitor cancer cell invasiveness towards nerves. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay combined with neutralizing antibody and small molecular inhibitors are employed to decode molecular mechanisms. RESULTS: Comparative analysis that the ECM was significantly associated with PNI status in the TCGA cohort. BRCA samples with higher α-SMA activity, fibrillar collagen, and collagen content had higher frequency of PNI. Compared with soft matrix, BRCA cells cultured in stiff matrix not only displayed higher cell invasiveness to DRG neurons but also had significant neurotrophic effects. Mechanistically, integrin ß1 was identified as a functional receptor to the influence of stiff matrix on BRCA cells. Moreover, stiffened matrix-induced activation of integrin ß1 transduces FAK-YAP signal cascade, which enhances cancer invasiveness and the neurotrophic effects. In clinical setting, PNI-positive BRCA samples had higher expression of ITGB1, phosphorylated FAK, YAP, and NGF compared with PNI-negative BRCA samples. CONCLUSIONS: Our findings suggest that stiff matrix induces expression of pro-metastatic and neurotrophic genes through integrin ß1-FAK-YAP signals, which finally facilitates PNI in BRCA. Thus, our study provides a new mechanism for PNI in BRCA and highlights nerve-based tumor treatment strategies.

6.
J Biochem Mol Toxicol ; 37(12): e23508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37623816

RESUMO

Wogonin (5,7-dihydroxy-8-methoxyflavone), a natural flavonoid compound in herbal plants, can suppress growth in hepatocellular carcinoma (HCC). However, the microRNA (miRNA) expression profiles that are influenced by wogonin have not been thoroughly described. To explore the novel miRNAs and the biological mechanism underlying the effect of wogonin on HCC cells. The effect of wogonin on Huh7 cell growth was assessed both in vitro and in vivo. The expression profiles of miRNAs were obtained by small RNA sequencing. Luciferase reporter experiment and bioinformatics analysis were conducted to determine whether tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) can bind to miR-27b-5p. Effects of the ectopic expression of YWHAZ and miR-27b-5p on Huh7 cells proliferation and apoptosis were evaluated. Furthermore, the cell cycle, apoptosis and multiple signaling pathway-related molecules were detected by Western blot analysis. Wogonin substantially inhibited the growth of Huh7 cells both in vitro and in vivo. Seventy miRNAs exhibited greater than twofold changes in wogonin-treated cells. Upregulation of miR-27b-5p inhibited Huh7 cell proliferation, and the anticancer effect of wogonin was reversed after miR-27b-5p knockdown. miR-27b-5p directly targeted YWHAZ in HCC cells. The proliferation-inhibiting effect of miR-27b-5p was revoked by YWHAZ overexpression. Meanwhile, inhibition of HCC growth was achieved by downregulating YWHAZ. Wogonin exerted antitumor activity through multiple signaling molecules, such as focal adhesion kinase, protein kinase B, mammalian target of rapamycin and molecules related to apoptosis and cell cycle by upregulating miR-27b-5p and downregulating YWHAZ. Our findings suggest that miR-27b-5p/YWHAZ axis contributes to the inhibitory effect of wogonin in HCC by targeting related genes and multiple signaling pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
7.
EMBO J ; 42(15): e112900, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350545

RESUMO

The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.


Assuntos
Angiomotinas , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/metabolismo , Proteínas dos Microfilamentos/metabolismo , Peptídeo Hidrolases , Peptídeos e Proteínas de Sinalização Intercelular/genética
8.
Cell Biol Toxicol ; 39(6): 2937-2952, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37261679

RESUMO

We present an integrated analysis of the clinical measurements, immune cells, and plasma lipidomics of 2000 individuals representing different age stages. In the study, we explore the interplay of systemic lipids metabolism and circulating immune cells through in-depth analysis of immune cell phenotype and function in peripheral dynamic lipids environment. The population makeup of circulation lymphocytes and lipid metabolites changes dynamically with age. We identified a major shift between young group and middle age group, at which point elevated, immune response is accompanied by the elevation of specific classes of peripheral phospholipids. We tested the effects in mouse model and found that 10-month-dietary added phospholipids induced T-cell senescence. However, the chronic malignant disease, the crosstalk between systemic metabolism and immunity, is completely changed. In cancer patients, the unusual plasma cholesteryl esters emerged, and free fatty acids decreased. The study reveals how immune cell classes and peripheral metabolism coordinate during age acceleration and suggests immune senescence is not isolated, and thus, system effect is the critical point for cell- and function-specific immune-metabolic targeting. • The study identifies a major shift of immune phenotype between young group and middle age group, and the immune response is accompanied by the elevation of specific classes of peripheral phospholipids; • The study suggests potential implications for translational studies such as using metabolic drug to regulate immune activity.


Assuntos
Fosfolipídeos , Exaustão das Células T , Pessoa de Meia-Idade , Camundongos , Animais , Humanos , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Ácidos Graxos/metabolismo , Ésteres do Colesterol
9.
Toxicol Appl Pharmacol ; 472: 116574, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271225

RESUMO

Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Lignanas , Neoplasias Hepáticas , Humanos , Piroptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Caspase 3/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Lignanas/farmacologia , Células Matadoras Naturais/metabolismo
10.
J Leukoc Biol ; 114(2): 164-179, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37202883

RESUMO

More immune-related adverse events (irAEs) have emerged along with increased immune checkpoint inhibitor (ICI) treatment. ICI-induced myocarditis is a rare type of irAE with early onset, rapid progression, and high mortality. Its specific pathophysiological mechanism is not fully understood. In total, 46 patients with tumors and 16 patients with ICI-induced myocarditis were included. We performed single-cell RNA sequencing on CD3 + T cells, flow cytometry, proteomics, and lipidomics to improve our understanding of the disease. First, we demonstrate the clinical features of patients with PD-1 inhibitor-induced myocarditis. We then identified 18 subsets of T cells using single-cell RNA sequencing and performed comparative analysis and further verification. The composition of T cells in the peripheral blood of patients has changed remarkably. Compared with non-irAE patients, effector T cells were increased in irAE patients, while naive T cells, γδ T cells, and mucosal-associated invariant T cell cluster cells were decreased. Besides, reduced γδ T cells characterized with effector functions, increased natural killer T cells with high levels of FCER1G in patients may suggest an association with disease development. Meanwhile, the peripheral inflammatory response was exacerbated in patients, accompanied by upregulation of exocytosis as well as increased levels of multiple lipids. We provide a comprehensive overview of the composition, gene profiles, and pathway signatures of CD3+ T cells driven by PD-1 inhibitor-induced myocarditis, as well as illustrate clinical features and multi-omic characteristics, providing a unique perspective on disease progression and therapy in clinical practice.


Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Progressão da Doença , Exocitose , Inibidores de Checkpoint Imunológico/efeitos adversos , Multiômica , Miocardite/induzido quimicamente
11.
Pharm Biol ; 61(1): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37010139

RESUMO

CONTEXT: Schisandrin B (Sch B), an active ingredient from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, possesses diverse pharmacological activities including antitumor, anti-inflammation, and hepatoprotection. OBJECTIVE: To explore the effect of Sch B on activated HSCs senescence in hepatic fibrosis and the mechanisms implicated. MATERIALS AND METHODS: ICR mice with CCl4-induced hepatic fibrosis were supplemented with Sch B (40 mg/kg) for 30 d and LX2 cells were treated with Sch B (5, 10 and 20 µM) for 24 h. Cellular senescence was assessed by senescence-related indicators senescence-associated ß-galactosidase (SA-ß-gal) activity and the expression of p16, p21, p53, γ-H2AX, H3K9me3, TERT, TRF1, and TRF2. Ferric ammonium citrate (FAC) and NCOA4 siRNA were used to evaluate the mechanisms underlying Sch B's regulation of cellular senescence. RESULTS: Sch B (40 mg/kg) reduced serum levels of AST and ALT (53.2% and 63.6%), alleviated hepatic collagen deposition, and promoted activated HSCs senescence in mice. Treatment with Sch B (20 µM) decreased cell viability to 80.38 ± 4.87% and elevated SA-ß-gal activity, with the levels of p16, p21 and p53 increased by 4.5-, 2.9-, and 3.5-fold and the levels of TERT, TRF1 and TRF2 decreased by 2.4-, 2.7-, and 2.6-fold in LX2 cells. FAC (400 µM) enhanced Sch B's effect mentioned above. NCOA4 siRNA weakened the effects of Sch B on iron deposition and HSCs senescence. CONCLUSIONS: Sch B could ameliorate hepatic fibrosis through the promotion of activated HSCs senescence, which might be attributed to its induction of NCOA4-mediated ferritinophagy and subsequent iron overload.


Assuntos
Células Estreladas do Fígado , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Camundongos Endogâmicos ICR , Cirrose Hepática/patologia , Senescência Celular , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
12.
EMBO J ; 42(11): e112126, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919851

RESUMO

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas de Sinalização YAP , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
13.
Front Immunol ; 14: 1033497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845133

RESUMO

Introduction: Although multiple targeted treatments have appeared, hepatocellular carcinoma (HCC) is still one of the most common causes of cancer-related deaths. The immunosuppressive tumor microenvironment (TME) is a critical factor in the oncogenesis and progression of HCC. The emerging scRNA-seq makes it possible to explore the TME at a high resolution. This study was designed to reveal the immune-metabolic crosstalk between immune cells in HCC and provide novel strategies to regulate immunosuppressive TME. Method: In this study, we performed scRNA-seq on paired tumor and peri-tumor tissues of HCC. The composition and differentiation trajectory of the immune populations in TME were portrayed. Cellphone DB was utilized to calculate interactions between the identified clusters. Besides, flow cytometry, RT-PCR and seahorse experiments were implemented to explore potential metabolic and epigenetic mechanisms of the inter-cellular interaction. Result: A total of 19 immune cell clusters were identified and 7 were found closely related to HCC prognosis. Besides, differentiation trajectories of T cells were also presented. Moreover, a new population, CD3+C1q+ tumor-associated macrophages (TAM) were identified and found significantly interacted with CD8+ CCL4+T cells. Compared to the peri-tumor tissue, their interaction was attenuated in tumor. Additionally, the dynamic presence of this newly found cluster was also verified in the peripheral blood of patients with sepsis. Furthermore, we found that CD3+C1q+TAM affected T cell immunity through C1q signaling-induced metabolic and epigenetic reprogramming, thereby potentially affecting tumor prognosis. Conclusion: Our study revealed the interaction between CD3+C1q+TAM and CD8+ CCL4+T cells and may provide implications for tackling the immunosuppressive TME in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linfócitos T CD8-Positivos , Doença Crônica , Complemento C1q/metabolismo , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Complexo CD3/imunologia
14.
Ann Med ; 55(2): 2247004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38232757

RESUMO

BACKGROUND: Traditional Chinese medicines have been reported to have outstanding effects in the treating of hepatocellular carcinoma. Scutellaria baicalensis (S. baicalensis) has demonstrated anti-tumor, anti-angiogenic, and anti-inflammatory properties. Baicalein, wogonin, and baicalin are the main pharmacologically bioactive compounds of S. baicalensis. METHODS: Eight electronic databases were searched to select articles published from their inception to 30 May 2022. For selected articles, clinical and preclinical data was obtained on the use of S. baicalensis and its bioactive compounds in hepatocellular carcinoma therapy. Statistical analyses were performed using RevMan version 5.3 and Stata software. Quality assessment of the studies was performed using Cochrane and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tools. RESULTS: Seven clinical and 17 preclinical in vivo studies along with 31 in vitro studies were included in this research. Meta-analysis showed that a Chinese herbal medicine preparation, with S. baicalensis as the sovereign herb, combined with Transcatheter arterial chemoembolization (TACE) or primary treatment, could lead to a significantly improved tumor objective response rate (Risk ratio (RR) = 1.57, 95% confidence interval (CI): [1.30, 1.90], p < 0.00001). Scutellaria baicalensis-based extracts (standard mean difference (SMD) = -0.86, 95%CI: [-1.20, -0.53], p < 0.00001), baicalein (SMD = -4.80, 95%CI: [-6.66, - 2.95], p < 0.00001), baicalin (SMD = -2.28, 95%CI [-3.26, -1.30], p < 0.00001) and wogonin (SMD = -1.41, 95%CI [-2.26, -0.57], p < 0.00001) slowed tumor growth in vivo. These outcomes might be linked to the mechanism by which S. baicalensis promotes apoptosis, induces autophagy, and blocks the expression of vascular endothelial growth factor (p < 0.05). CONCLUSION: Based on experimental and clinical evidence, we believe that S. baicalensis and its bioactive compounds have therapeutic potential and plausible mechanisms of action against hepatocellular carcinoma, in terms of efficacy and safety.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Humanos , Scutellaria baicalensis , Carcinoma Hepatocelular/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Neoplasias Hepáticas/tratamento farmacológico
15.
Ecotoxicol Environ Saf ; 248: 114329, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442400

RESUMO

The public health harms caused by fine particulate matter (PM2.5) have become a global focus, with PM2.5 exposure recognized as a critical risk factor for global morbidity and mortality. Chronic inflammation is the common pathophysiological feature of respiratory diseases induced by PM2.5 and is the most critical cause of all these diseases. However, presently there is a lack of effective preventive and therapeutic approaches for inflammatory lung injuries caused by PM2.5 exposure. Baicalin is a herb-derived effective flavonoid compound with multiple health benefits. This study established a murine lung inflammatory injury model via inhalation of PM2.5 aerosols. The data showed that after baicalin intervention, lung injury pathological score of baicalin (4.16 ± 0.54, 3.33 ± 0.76, 4.00 ± 0.45) and claricid (3.00 ± 0.78) treatments were markedly lower than PM2.5-treated mice (6.17 ± 0.31), and pathological damage was alleviated. Compared to the PM2.5 group, the spleen and lung indexes in the baicalin and claricid groups were significantly reduced. The inflammatory cytokines of TNF-α, IL-18, and IL-1ß in serum, alveolar lavage fluid, and lung tissue were significantly decreased in the baicalin and claricid groups. The expressions of inflammatory pathway-related genes and proteins HMGB1, NLRP3, ASC, and caspase-1 were up-regulated in the PM2.5 group. The expressions of these genes and proteins were significantly decreased following baicalin treatment. The lung function indicators showed that the MV (65.94 ± 8.19 mL), sRaw (1.79 ± 0.08 cm H2O.s), and FRC (0.52 ± 0.01 mL) in the PM2.5 group were higher than in the control and baicalin groups, and respiratory function was improved by baicalin. PM2.5 exposure markedly altered the bacterial composition at the genus level. The dominant flora relative abundances of uncultured_bacterium_f_Muribaculaceae, Streptococcus, and Lactobacillus, were decreased from the control group (9.20%, 8.53%, 6.21%) to PM2.5 group (6.26%, 5.49%, 4.77%), respectively. Following baicalin intervention, the relative abundances were 9.72%, 6.65%, and 3.57%, respectively. Therefore, baicalin could potentially prevent and improve mice lung inflammatory injury induced by PM2.5 exposure. Baicalin might provide a protective role by balancing oropharyngeal microbiota and affecting the expression of the HMGB1/Caspase1 pathway.


Assuntos
Proteína HMGB1 , Lesão Pulmonar , Camundongos , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Camundongos Endogâmicos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Pulmão
16.
Front Genet ; 13: 952335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846138

RESUMO

Background: Gastric cancer (GC) has a high mortality rate and is particularly prevalent in China. The extracellular matrix protein, prolyl 4-hydroxylase subunit alpha 3 (P4HA3), has been implicated in various cancers. We aimed to assess the diagnostic and prognostic value of P4HA3 in GC and investigate its correlation with immune cell infiltration. Methods: The present study used microarray data from the Cancer Genome Atlas (TCGA) to analyze the association of P4HA3 expression with clinicopathological features. Data from the Gene Expression Omnibus (GEO) were used for validation. Receiver operating characteristic (ROC) and Kaplan-Meier curves were constructed to determine the diagnostic and prognostic value of P4HA3 in GC. Univariate and multivariate regression analyses were performed to assess the impact of P4HA3 on overall survival (OS) rates. A protein-protein interaction (PPI) network was generated and functional enrichment evaluated. Single-sample gene set enrichment analysis (ssGSEA) was conducted to correlate P4HA3 expression with immune cell infiltration. The correlation between P4HA3 and immune check point genes was studied. Results: P4HA3 was over-expressed in GC, along with 15 other types of cancer, including breast invasive carcinoma and cholangiocarcinoma. P4HA3 showed high diagnostic and prognostic value in GC and was an independent prognostic factor. P4HA3, TNM (tumor, node, metastases) stage, pathological stage and age all correlated with OS rates. Genes related to P4HA3 were enriched in the lumen of the endoplasmic reticulum and included procollagen-proline 3-dioxygenase activity. P4HA3 expression correlated with numbers of macrophages, natural killer (NK) cells, immature dendritic cells (iDC), mast cells, eosinophils, effective memory T cells (Tem), T-helper 1 (Th1) cells and dendritic cells (DC). P4HA3 was positively correlated with hepatitis A virus cellular receptor 2 (HAVCR2) and programmed cell death 1 ligand 2 (PDCD1LG2). Conclusion: P4HA3 is a potential independent biomarker for prognosis of GC and may be an immunotherapy target in the treatment of GC.

17.
Front Bioeng Biotechnol ; 10: 939371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866028

RESUMO

Purpose: The management of bone defects is a crucial content of total knee revision. This study compared the biomechanical performance of porous Ti6Al4V block and tumor prosthesis UHMWPE block in treating distal femoral bone defects. Methods: The finite element models of AORI type 3 distal femoral bone defect treated with porous Ti6Al4V block and UHMWPE block were established. Sensitivity analysis was performed to obtain the appropriate mesh size. The biomechanical performance of treatment methods in bone defects were evaluated according to the peak stress, the Von Mises stress distribution, and the average stresses of regions of interest under the condition of standing on one foot and flexion of the knee. Statistical analysis was conducted by independent samples t-test in SPSS (p < 0.05). Results: In the standing on one-foot state, the peak stress of the porous Ti6Al4V block was 12.42 MPa and that of the UHMWPE block was 19.97 MPa, which is close to its yield stress (21 MPa). Meanwhile, the stress distribution of the UHMWPE block was uneven. In the flexion state, the peak stress of the porous Ti6Al4V block was 16.28 MPa, while that of the UHMWPE block was 14.82 MPa. Compared with the porous Ti6Al4V block group, the average stress of the region of interest in UHMWPE block group was higher in the standing on one foot state and lower in the flexion state (p < 0.05). Conclusion: More uniform stress distribution was identified in the porous Ti6Al4V block application which could reserve more bone. On the contrary, uneven stress distribution and a larger high-stress concentration area were found in the UHMWPE block. Hence, the porous Ti6Al4V block is recommended for the treatment of AORI type 3 distal femoral bone defect.

18.
Front Cell Dev Biol ; 10: 859958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399535

RESUMO

Background: Melanoma is a highly malignant and aggressive tumor. The search for new and effective biomarkers facilitates early diagnosis and treatment, ultimately improving the prognosis of melanoma patients. Although the transmembrane protein TMEM176B has been linked to a number of cancers, its role in cancer immunity remains unknown. Methods: Expression levels of TMEM176B in normal tissues and several cancers, including Skin Cutaneous Melanoma (SKCM), were collected from TCGA and GTEx. We used Receiver operating characteristic and Kaplan-Meier survival curves and performed regression analysis to elucidate the link between TMEM176B and clinicopathological features of SKCM in order to determine the prognostic significance of TMEM176B in SKCM. We then used the GEPIA and STRING websites to search for proteins and associated top genes that may interact with TMEM176B and enriched them for analysis. The link between TMEM176B and immune cells infiltration was then investigated using TIMER, CIBERSORT algorithm and GSVA package of R (v3.6.3). Finally, animal tests were conducted to confirm the expression of Tmem176b and its influence on T-cell immune infiltration. Results: TMEM176B expression was considerably elevated in SKCM compared to normal tissues. Particularly, TMEM176B expression was also linked to pathological stage, tumor ulceration and radiation therapy. Patients with elevated TMEM176B expression had a better prognosis, according to the survival analysis. The majority of tumor infiltrating lymphocytes (TILs) especially T cells in SKCM was positively linked with TMEM176B expression. Our animal experiments also verified that the T-cell infiltration was significantly inhibited in local melanoma tissue of Tmem176b knockout mice. At the same time deleting Tmem176b accelerated tumor progress and impaired T cells effector function. Conclusion: Upregulated expression of TMEM176B in SKCM is associated with a better prognosis and it has the potential to serve as a diagnostic and prognostic marker for the disease. It may serve as a target for SKCM immunotherapy by regulating CD8+ T cells although it requires more evidence.

19.
Exp Ther Med ; 22(6): 1435, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34707716

RESUMO

Flavonoids which are extracted from citrus peel and pulp have been reported to have multiple beneficial effects on human health. Isosinensetin (ISO) is a type of flavonoid compound, which has several protective effects including anticancer, antioxidant, antiviral, anti-inflammatory and bacteriostatic. However, the molecular mechanism of its antioxidant and anti-inflammatory effects remain unclear. The present study aimed to investigate the intervention effect and possible mechanism of ISO on human bronchial epithelial cells injured by fine particular matter ≤2.5 µm in diameter (PM2.5). In the present study, the cell viability was detected by Cell Counting Kit-8 method. The levels of pro-inflammatory cytokines were analyzed by ELISA. The level of reactive oxygen species (ROS) was detected by fluorescence probe. The expression levels of proliferating cell nuclear antigen (PCNA), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor ÐºΒ (NF-кB) proteins were detected by western blotting. The results revealed that ISO evidently increased the viability of 16-HBE cells and sharply decreased the levels of pro-inflammatory factors in cell culture supernatant. ISO significantly inhibited ROS release caused by PM2.5. Moreover, the expression levels of PCNA, Nrf2 and NF-кB proteins were downregulated after ISO incubation. These results indicated that ISO alleviated 16-HBE-cell injury by PM2.5 through the ROS-Nrf2/NF-кB signaling pathway.

20.
Cell Rep ; 36(8): 109596, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433060

RESUMO

Germline alterations of the NF2 gene cause neurofibromatosis type 2, a syndrome manifested with benign tumors, and Nf2 deletion in mice also results in slow tumorigenesis. As a regulator of the Hippo signaling pathway, NF2 induces LATS1/2 kinases and consequently represses YAP/TAZ. YAP/TAZ oncoproteins are also inhibited by motin family proteins (Motins). Here, we show that the Hippo signaling is fine-tuned by Motins in a NF2-dependent manner, in which NF2 recruits E3 ligase RNF146 to facilitate ubiquitination and subsequent degradation of Motins. In the absence of NF2, Motins robustly accumulate to restrict full activation of YAP/TAZ and prevent rapid tumorigenesis. Hence, NF2 deficiency not only activates YAP/TAZ by inhibiting LATS1/2 but also stabilizes Motins to keep YAP/TAZ activity in check. The upregulation of Motins upon NF2 deletion serves as a strategy for avoiding uncontrolled perturbation of the Hippo signaling and may contribute to the benign nature of most NF2-mutated tumors.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes da Neurofibromatose 2 , Via de Sinalização Hippo/fisiologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Via de Sinalização Hippo/genética , Humanos , Camundongos , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA