RESUMO
BACKGROUND: T-cell lymphoblastic lymphoma/leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL. METHODS: HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse. RESULTS: The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo. CONCLUSIONS: Our study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
RESUMO
S-palmitoylation is essential for cancer development via regulating protein stability, function and subcellular location, yet the roles S-palmitoylation plays in diffuse large B-cell lymphoma (DLBCL) progression remain enigmatic. In this study, we uncovered a novel function of the palmitoyltransferase ZDHHC21 as a tumor suppressor in DLBCL and identified ZDHHC21 as a key regulator of fatty acid synthetase (FASN) S-palmitoylation for the first time. Specifically, ZDHHC21 was downregulated in DLBCL, and its expression level was associated with the clinical prognosis of patients with DLBCL. In vitro and in vivo experiments suggested that ZDHHC21 suppressed DLBCL cell proliferation. Mechanistically, ZDHHC21 interacted with FASN and mediated its palmitoylation at Cys1317, resulting in a decrease in FASN protein stability and fatty acid synthesis, consequently leading to the inhibition of DLBCL cell growth. Of note, an FDA-approved small-molecule compound lanatoside C interacted with ZDHHC21, increased ZDHHC21 protein stability and decreased FASN expression, which contributed to the suppression of DLBCL growth in vitro and in vivo. Our results demonstrate that ZDHHC21 strongly represses DLBCL cell proliferation by mediating FASN palmitoylation, and suggest that targeting ZDHHC21/FASN axis is a potential therapeutic strategy against DLBCL.
Assuntos
Ácido Graxo Sintase Tipo I , Linfoma Difuso de Grandes Células B , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , PrognósticoRESUMO
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Assuntos
Carcinogênese , Pesquisa , Humanos , Transformação Celular Neoplásica , Mutação , Microambiente Tumoral/genéticaRESUMO
OBJECTIVE: Metabolic disorders are regarded as hallmarks of multiple myeloma (MM) and are responsible for rapid cancer cell proliferation and tumor growth. However, the exact biological roles of metabolites in MM cells have not been fully explored. This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid (Lac) in the proliferation of myeloma cells and cell sensitivity to bortezomib (BTZ). METHODS: Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients. The CCK8 assay and flow cytometry were used to detect cell proliferation, apoptosis, and cell cycle changes. Western blotting was used to detect the potential mechanism and apoptosis- and cycle-related protein changes. RESULTS: Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients. It was significantly correlated with Durie-Salmon Staging (DS Staging) and the International Staging System (ISS Staging) and the serum and urinary involved/uninvolved free light chain ratios. Patients with relatively high lactate levels had a poor treatment response. Moreover, in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells, which was accompanied by an increased proportion of S-phase cells. In addition, Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2 (NFkB2) and RelB. CONCLUSION: Metabolic changes are important in MM cell proliferation and treatment response; lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.
Assuntos
Antineoplásicos , Bortezomib , Resistencia a Medicamentos Antineoplásicos , Ácido Láctico , Mieloma Múltiplo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Metaboloma , Mieloma Múltiplo/sangue , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , PrognósticoRESUMO
BACKGROUND: Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL. METHODS: The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens. RESULTS: We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo . CONCLUSION: Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.
Assuntos
Linfoma Difuso de Grandes Células B , Semaforinas , Humanos , Animais , Camundongos , Rituximab/farmacologia , Rituximab/uso terapêutico , Via de Sinalização Hippo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Prognóstico , Semaforinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
Extranodal NK/T-cell lymphoma (ENKTL) is a highly aggressive and heterogeneous disease with poor clinical outcome. Our previous work had demonstrated that circulating tumor DNA (ctDNA) analyses were feasible in ENKTL, and dynamic tracing of ctDNA could be used to monitor the disease status. However, the prognostic value of ctDNA in ENKTL has not been fully investigated. Patients with newly diagnosed ENKTL from February 2017 to December 2021 (n = 70) were enrolled. The pretreatment ctDNA concentration (hGE/mL) was measured. The prognostic value of ctDNA, international prognostic index (IPI), Korean prognostic index (KPI), PINK-E, and the combination of PINK-E and ctDNA (PINK-EC) were investigated in our cohort. The IPI and PINK-E risk categories had a significant difference in progression-free survival (PFS) and overall survival (OS) between the low-risk and intermediate-risk groups. The KPI risk category had a difference in PFS and OS between the intermediate-risk and high-risk groups. Furthermore, integrating ctDNA into the PINK-E model could overcome the shortcomings of other prognostic models, which could significantly distinguish the different-risk groups. Overall, our results demonstrated that PINK-EC showed a superior prognostic prediction value and stability compared with IPI, KPI, and PINK-E. The integration of molecular features of the tumor into classic risk categories might better characterize a high-risk group where novel treatment approaches are most needed.