RESUMO
Background: Lung adenocarcinoma is one of the leading causes of cancer-related deaths because of the lack of early specific clinical indicators. MicroRNAs (miRNAs) have become the focus in lung cancer diagnosis. Further studies are required to explore miRNA expression in the serum of lung adenocarcinoma patients and their correlation with therapy and analyse specific messenger RNA targets to improve the specificity and sensitivity of early diagnosis. Methods: The Toray 3D-Gene miRNA array was used to compare the expression levels of various miRNAs in the sera of patients with lung adenocarcinoma and healthy volunteers. Highly expressed miRNAs were selected for further analysis. To verify the screening results, serum and pleural fluid samples were analysed using qRT-PCR. Serum levels of the miRNAs and their correlation with the clinical information of patients with lung adenocarcinoma were analysed. The functions of miRNAs were further analysed using the Kyoto Encyclopedia of Gene and Genomes and Gene Ontology databases. Results: Microarray analysis identified 60 and 50 miRNAs with upregulated and downregulated expressions, respectively, in the serum of patients with lung adenocarcinoma compared to those in healthy individuals. Using qRT-qPCR to detection of miRNAs expression in the serum or pleural effusion of patients with early and advanced lung adenocarcinoma, we found that miR-4433a-3p could be used as a diagnostic marker and therapeutic evaluation indicator for lung adenocarcinoma. Serum of miR-4433a-3p levels significantly correlated with the clinical stage. miR-4433a-3p may be more suitable than other tumour markers for the early diagnosis and evaluation of therapeutic effects in lung adenocarcinoma. miR-4433a-3p may affect tumour growth and metastasis by acting on target genes (PIK3CD, UBE2J2, ICMT, PRDM16 and others) and regulating tumour-related signalling pathways (MAPK signal pathway, Ras signalling pathway and others). Conclusion: miR-4433a-3p may serve as a biomarker for the early diagnosis of lung adenocarcinoma and monitoring of therapeutic effects.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy because of its aggressive nature and the paucity of effective treatment options. Almost all registered drugs have proven ineffective in addressing the needs of patients with PDAC. This is the result of a poor understanding of the unique tumor-immune microenvironment (TME) in PDAC. To identify druggable regulators of immunosuppressive TME, we performed a kinome- and membranome-focused CRISPR screening using orthotopic PDAC models. Our data showed that receptor-interacting protein kinase 2 (RIPK2) is a crucial driver of immune evasion of cytotoxic T-cell killing and that genetic or pharmacologic targeting of RIPK2 sensitizes PDAC to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy, leading to prolonged survival or complete regression. Mechanistic studies revealed that tumor-intrinsic RIPK2 ablation disrupts desmoplastic TME and restores MHC class I (MHC-I) surface levels through eliminating NBR1-mediated autophagy-lysosomal degradation. Our results provide a rationale for a novel combination therapy consisting of RIPK2 inhibition and anti-PD-1 immunotherapy for PDAC. SIGNIFICANCE: PDAC is resistant to almost all available therapies, including immune checkpoint blockade. Through in vivo CRISPR screen, we identified that RIPK2 plays a crucial role in facilitating immune evasion by impeding antigen presentation and cytotoxic T-cell killing. Targeting tumor-intrinsic RIPK2 either genetically or pharmacologically improves PDAC to anti-PD-1 immunotherapy. See related commentary by Liu et al., p. 208 . This article is featured in Selected Articles from This Issue, p. 201.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia , Linfócitos T Citotóxicos/metabolismo , Proteínas Quinases , Microambiente TumoralRESUMO
BACKGROUND: Immune skeletal dysplasia with neurodevelopmental abnormalities (ISDNA) is an extremely rare, autosomal recessive genetic disorder characterized by various skeletal abnormalities, neurodevelopmental deficits, and abnormal immune system function. ISDNA is caused by variation in the exostosin-like 3 (EXTL3) gene, located on chromosome 8p21.2, whose primary function is the biosynthesis of heparan sulfate (HS) skeleton structure. Only a few variations in the EXTL3 gene have been discovered so far. In these years of development, many pathogenic variants in genetic diseases with genetic and phenotypic heterogeneity have been investigated using whole-exome sequencing (WES) technology. METHODS: In this research, a novel EXTL3 variant was first detected in a patient using WES, which was validated from Sanger sequencing in this family. Family history and clinical information were then collected through comprehensive medical examinations and genetic counseling. In silico prediction was then utilized to confirm the pathogenicity of the variant. RESULTS: A novel homozygous variant, NM_001440: c.2015G>A (p.Arg672Gln) in the EXTL3 gene, was identified using WES, which has never been reported before. Sanger sequencing was performed to confirm that the variant segregated with the disease within the family. CONCLUSION: This research identified a novel pathogenic variant in the EXTL3 gene responsible for ISDNA in a Chinese family. It showed the potential diagnostic role of WES in ISDNA, expanded the EXTL3 gene variation spectrum, and demonstrated that the diagnosis of ISDNA using WES is feasible and effective. More comprehensive genetic counseling and precise prenatal diagnosis for the next pregnancy can also be provided to families with genetic disorders.
Assuntos
Anormalidades Musculoesqueléticas , N-Acetilglucosaminiltransferases , Osteocondrodisplasias , Feminino , Humanos , Gravidez , China , Heparitina Sulfato , Anormalidades Musculoesqueléticas/genética , N-Acetilglucosaminiltransferases/genética , Osteocondrodisplasias/genéticaRESUMO
Defects are an inevitable occurrence during the manufacturing and use of ferromagnetic materials, making it crucial to study the microscopic mechanism of magnetostrictive properties of ferromagnetic materials with defects. This paper conducts molecular dynamics simulations on low-dimensional iron thin films containing hole or crack defects, analyzes and compares the impact of defect size on magnetostrictive properties, and investigates the microscopic mechanism of their effects. The results indicate that the saturation magnetostrictive strains of the defect models do not increase monotonically as the defect size increases. Additionally, it is discovered that the arrangement of atomic magnetic moments in the initial magnetic moment configuration also affects the magnetostrictive properties. When controlling the size of the hole or crack within a certain defect area, it is found that the hole size has less influence on the initial magnetic moment configuration, resulting in a smaller corresponding change in the saturation strain and thus having a lesser impact on the magnetostrictive properties. Conversely, when the crack size changes, the arrangement of the atomic magnetic moments in the initial magnetic moment configuration changes more significantly, resulting in a greater corresponding change in saturation strain, and thus having a greater impact on the magnetostriction performance.
RESUMO
Peroxisomal D-bifunctional protein (DBP) is an indispensable enzyme of the fatty acid ß-oxidation in the peroxisome of humans. However, the role of DBP in oncogenesis is poorly understood. Our previous studies have demonstrated that DBP overexpression promotes hepatocellular carcinoma (HCC) cell proliferation. In this study, we evaluated the expression of DBP in 75 primary HCC samples using RT-qPCR, immunohistochemistry, and Western blot, as well as its correlation with the prognosis of HCC. In addition, we explored the mechanisms by which DBP promotes HCC cell proliferation. We found that DBP expression was upregulated in HCC tumor tissues, and higher DBP expression was positively correlated with tumor size and TNM stage. Multinomial ordinal logistic regression analysis indicated that lower DBP mRNA level was an independent protective factor of HCC. Notably, DBP was overexpressed in the peroxisome and cytosol and mitochondria of tumor tissue cells. Xenograft tumor growth was promoted by overexpressing DBP outside peroxisome in vivo. Mechanistically, DBP overexpression in cytosol activated the PI3K/AKT signaling axis and promoted HCC cell proliferation by downregulating apoptosis via AKT/FOXO3a/Bim axis. In addition, overexpression of DBP increased glucose uptake and glycogen content via AKT/GSK3ß axis, as well as elevated the activity of mitochondrial respiratory chain complex III to increase ATP content via the mitochondrial translocation of p-GSK3ß in an AKT-dependent manner. Taken together, this study was the first to report the expression of DBP in peroxisome and cytosol, and that the cytosolic DBP has a critical role in the metabolic reprogramming and adaptation of HCC cells, which provides a valuable reference for instituting an HCC treatment plan.
RESUMO
OBJECTIVE: To explore the genetic etiology for a fetus with Walker-Warburg syndrome(WWS). METHODS: A fetus with WWS diagnosed at Gansu Provincial Maternity and Child Health Care Hospital in June 9, 2021 was selected as the study subject. Genomic DNA was extracted from amniotic fluid sample of the fetus and peripheral blood samples from its parents. Trio-Whole exome sequencing (trio-WES) was carried out. Candidate variants were verified by Sanger sequencing. RESULTS: The fetus was found to harbor compound heterozygous variants of the POMT2 gene, namely c.471delC (p.F158Lfs*42) and c.1975C>T (p.R659W), which were respectively inherited from its father and mother. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), they were respectively rated as pathogenic (PVS1+PM2_Supporting+PP4) and likely pathogenic (PM2_Supporting+PM3+PP3_Moderate+PP4). CONCLUSION: Trio-WES may be used for the prenatal diagnosis of WWS. The compound heterozygous variants of the POMT2 gene probably underlay the disorder in this fetus. Above finding has expanded the mutational spectrum of the POMT2 gene and enabled definite diagnosis and genetic counseling for the family.
Assuntos
Síndrome de Walker-Warburg , Gravidez , Criança , Feminino , Humanos , Diagnóstico Pré-Natal , Feto , Aconselhamento Genético , Genômica , MutaçãoRESUMO
OBJECTIVE: Histone deacetylases (HDACs) are the key regulators involved in the process of embryo development and tumor progression and are often dysregulated in numerous disordered cells, including tumor cells and somatic cell nuclear transfer (SCNT) embryos. Psammaplin A (PsA), a natural small-molecular therapeutic agent, is a potent histone deacetylase inhibitor (HDACi) that alters the regulation of histone. SAMPLES: Approximately 2,400 bovine parthenogenetic (PA) embryos. PROCEDURES: To investigate the effect of PsA on bovine preimplanted embryos, we analyzed the preimplantation development of PA embryos treated with PsA in this study. RESULTS: The blastocyst formation rate of bovine PA embryos decreased sharply with an increase in concentration and duration. Furthermore, the expression of the pluripotency-related gene Nanog was decreased, and the inhibitory effects on histone deacetylases 1 (HDAC1) and DNA methylation transferase 1 (DNMT1) were observed in bovine PA embryos. The acetylation level of histone H3 lysine 9 (H3K9) was enhanced by a PsA treatment of 10 µM for 6 h, while the DNA methylation appeared unchanged. Interestingly, we also found that PsA treatment enhanced the intracellular reactive oxygen species (ROS) generation and decreased the intracellular mitochondrial membrane potential (MMP)- and superoxide dismutase 1 (SOD1)-induced oxidative stress. Our findings improve the understanding of HDAC in embryo development and provide a theoretical basis and reproduction toxicity evaluation for the application of PsA. CLINICAL RELEVANCE: These results indicate that PsA inhibits the development of bovine preimplantation PA embryos, supplying data for the PsA clinical application concentration to avoid reproductive toxicity. In addition, the reproduction toxic effect of PsA may be modulated through increased oxidative stress on the bovine PA embryo, suggesting that PsA in combination with antioxidants, for example, melatonin, might be an effective clinical application strategy.
Assuntos
Artrite Psoriásica , Doenças dos Bovinos , Animais , Bovinos , Artrite Psoriásica/veterinária , Estresse Oxidativo , Epigênese Genética , Histona DesacetilasesRESUMO
BACKGROUND AND AIMS: We aimed to establish a modified model of the Kyoto classification score and verify its accuracy for predicting Helicobacter pylori (HP) infection during endoscopy. METHODS: Patients who underwent gastroscopy from June 2020 to March 2021 were included in this study. Atrophy, intestinal metaplasia, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, xanthoma, map-like redness, fundic gland polyp, and regular arrangement of collecting venules (RAC) were recorded according to the Kyoto classification of gastritis. The HP infection status of participants was determined by a 13C breath test, anti-HP antibody, and histopathologic hematoxylin and eosin staining. The modified Kyoto classification scoring model was established based on univariate analysis and logistic regression analysis. The modified scoring model was used to judge the status of HP infection in patients undergoing gastroscopy from July to September 2021 and to evaluate the accuracy of the prediction. RESULTS: Of 667 participants in the derivation dataset, 326 cases had HP infection and 341 cases did not. Atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, and spotty redness were associated with HP current infection. Thus, a new scoring model, termed the modified Kyoto classification scoring model, was constructed that included atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, fundic gland polyp, and RAC as indicators. To test the model, 808 subjects, including 251 HP-positive patients, comprised the validation dataset. CONCLUSIONS: The modified Kyoto classification scoring model improved the accuracy of endoscopic determination of HP current infection and has clinical application potential in the Chinese population.
Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Gastrite/diagnóstico , Gastrite/patologia , Gastroscopia , Mucosa Gástrica/patologia , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/patologia , Metaplasia/patologia , Atrofia/patologiaRESUMO
We report the formulation, characterization, colloidal stability, and in vitro efficiency of Fisetin nanocrystals stabilized by poloxamer P407. Such nanocrystals present a nanometer scale (148.6 ± 1.1 nm) and a high homogeneity (polydispersity index of 0.17 ± 0.01), with a production yield of 97.0 ± 2.5%. The engineered formulations of nanocrystals suspension (pH of 7.4 ± 0.1), stabilized via steric repulsion, are stable for several days in aqueous environment (Milli Q water, NaCl 10 mM or mannitol 5% w/v), for few days in HEPES buffered saline (HBS) (20 / 150 mM) under sink conditions, and in culture medium. After freeze drying in 5% w/v mannitol, the nanocrystal formulations can be stored at -80 °C for at least 120 days. Drug release experiments displayed a 98.7 ± 5.1% cumulative release over 3 days in HBS. Compared to the free drug, the nanocrystal formulations showed an improved cytotoxicity highlighted by the decrease of the half maximal inhibitory concentration for both murine Lewis lung carcinoma (3LL) and human endothelial (EA.hy926) cell lines. In addition, after incubation with Fisetin nanosuspensions, significant changes in the cell morphology for both cell lines were observed, showing an improved anti-angiogenic effect of nanocrystals formulation compared to the free drug. Overall, Fisetin formulated as nanocrystals showed enhanced biopharmaceutical properties and in vitro activity, offering a wide range of indications for challenging applications in the clinic.
RESUMO
Peroxiredoxin 5 (PRDX5) is the sole member of the atypical 2-Cys subfamily of mammalian PRDXs, a family of thiol-dependent peroxidases. In addition to its antioxidant effect, PRDX5 has been implicated in modulating the inflammatory response. In this study, the full-length cDNA encoding porcine PRDX5 (pPRDX5) was cloned. Subsequently, using porcine alveolar macrophages (PAMs), the target cells of PRRSV infection in vivo, we found that the recombinant pPRDX5 protein inhibited inflammatory responses induced by tumor necrosis factor alpha (TNF-α) or porcine reproductive and respiratory syndrome virus (PRRSV), a virus causing severe interstitial pneumonia in pigs. By contrast, knockdown of endogenous pPRDX5 with specific siRNA enhanced inflammatory responses induced by TNF-α or PRRSV. We also demonstrated that the involvement of pPRDX5 in inflammation regulation depended on its peroxidase activity. Taken together, these results showed that pPRDX5 is an anti-inflammatory molecule, which may play an important immune-regulation role in the pathogenicity of PRRSV.
Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Anti-Inflamatórios/metabolismo , Clonagem Molecular , Macrófagos Alveolares/metabolismo , Mamíferos/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: No known case of neuroendocrine tumour (NET) with schwannoma has been reported. CASE SUMMARY: A 63-year-old female presented to our hospital with nausea and vomiting. Upper gastrointestinal endoscopy revealed a mass in the descending part of the duodenum. Using ultrasound gastroscopy, we found that the tumour originated from the submucosa and showed low echo. We removed the tumour by electrocoagulation and sent it for pathological biopsy. CONCLUSION: Immunohistochemical results showed that the mass was a rare NET with neurilemmoma.
RESUMO
Antimicrobial peptides (AMPs) display promising potential in cancer therapy. Modification with fatty acids is a simple and effective approach to improve the activity of AMPs. In the present study, we investigated the effects of fatty acid chain lengths on the anticancer activity, self-assembly and mechanism of action of CAMEL (CM15, KWKLFKKIGAVLKVL-NH2), an amphipathic AMP with 15 amino acids. Conjugation of fatty acids could obviously improve the in vitro anticancer activity of CAMEL. Among the tested peptides, C12-CAMEL showed the highest anticancer activity, while C16-CAMEL killed cancer cells with the slowest kinetics. This may be related to the self-assembly of C12-CAMEL and C16-CAMEL, which could form spherical nanoparticles and tightened nanofibers, respectively. In addition, necrosis and necroptosis rather than apoptosis were the major mechanisms underlying the anticancer activity of CAMEL, C12-CAMEL and C16-CAMEL, implying that modification with fatty acids did not obviously alter the mechanism of action of CAMEL. Notably, C12-CAMEL, with high and rapid cell-killing activity, exhibited significantly stronger in vivo anticancer activity than CAMEL and C16-CAMEL. Overall, the present work suggests that the choice of a suitable fatty acid for structural modification is necessary for improving the anticancer activity of AMPs.
Assuntos
Camelus , Ácidos Graxos , Animais , Peptídeos Antimicrobianos , Apoptose , Ácidos Graxos/química , Ácidos Graxos/farmacologiaRESUMO
Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.
Assuntos
Saccharum , Cromossomos , Genoma de Planta/genética , Genômica , Ploidias , Saccharum/genéticaRESUMO
Our previous studies have proved that 17ß-hydroxysteroid dehydrogenase 4 (HSD17B4) is a novel proliferation-promoting protein. The overexpression of HSD17B4 promotes hepatocellular carcinoma (HCC) cell proliferation. Vitamin K2 (VK2), a fat-soluble vitamin, has the function of promoting coagulation and can inhibit the progression of liver cancer. A previous study demonstrated that VK2 could bind to HSD17B4 in HepG2 cells. However, the mechanism of VK2 in inhibiting HCC cell proliferation is not clear. In this study, we investigate whether VK2 can inhibit the proliferation of HCC cell induced by HSD17B4 and the possible mechanism. We detected the effect of VK2 on HSD17B4-induced HCC cell proliferation, and the activation of STAT3, AKT, and MEK/ERK signaling pathways. We measured the effect of HSD17B4 on the growth of transplanted tumor and the inhibitory effect of VK2. Our results indicated that VK2 directly binds to HSD17B4, but does not affect the expression of HSD17B4, to inhibit the proliferation of HCC cells by inhibiting the activation of Akt and MEK/ERK signaling pathways, leading to decreased STAT3 activation. VK2 also inhibited the growth of HSD17B4-induced transplanted tumors. These findings provide a theoretical and experimental basis for possible future prevention and treatment of HCC using VK2.
RESUMO
OBJECTIVE: PD-L1 and PD-L2 expression levels determine immune evasion and the therapeutic efficacy of immune checkpoint blockade. The factors that drive inducible PD-L1 expression have been extensively studied, but mechanisms that result in constitutive PD-L1 expression in cancer cells are largely unknown. METHODS: DNA elements were deleted in cells by CRISPR/Cas9-mediated knockout. Protein function was inhibited by chemical inhibitors. Protein levels were examined by Western blot, mRNA levels were examined by real-time RT-PCR, and surface protein expression was determined by cellular immunofluorescence and flow cytometry. Immune evasion was examined by in vitro T cell-mediated killing. RESULTS: We determined the core regions (chr9: 5, 496, 378-5, 499, 663) of a previously identified PD-L1L2-super-enhancer (SE). Through systematic analysis, we found that the E26 transformation-specific (ETS) variant transcription factor (ETV4) bound to this core DNA region but not to DNA surrounding PD-L1L2SE. Genetic knockout of ETV4 dramatically reduced the expressions of both PD-L1 and PD-L2. ETV4 transcription was dependent on ERK activation, and BRAF/TAK1-induced ERK activation was dependent on extracellular signaling from αvß3 integrin, which profoundly affected ETV4 transcription and PD-L1/L2 expression. Genetic silencing or pharmacological inhibition of components of the PD-L1L2-SE-associated pathway rendered cancer cells susceptible to T cell-mediated killing. CONCLUSIONS: We identified a pathway originating from the extracellular matrix that signaled via integrin/BRAF/TAK1/ERK/ETV4 to PD-L1L2-SE to induce PD-L1-mediated immune evasion. These results provided new insights into PD-L1L2-SE activation and pathways associated with immune checkpoint regulation in cancer.
RESUMO
BACKGROUND: Treacher Collins syndrome (TCS) is a rare autosomal dominant or recessive disorder, that involves unique bilateral craniofacial malformations. The phenotypes of TCS are extremely diverse. Interventional surgery can improve hearing loss and facial deformity in TCS patients. METHOD: We recruited seven TCS families. Variant screening in probands was performed by targeted next-generation sequencing (NGS). The variants identified were confirmed by Sanger sequencing. The pathogenicity of all the mutations was evaluated using the guidelines of the American College of Medical Genetics and Genomics (ACMG) and InterVar software. RESULTS: Three frameshift variants, two nonsense variants, one missense variant, and one splicing variant of TCOF1 were identified in the seven TCS probands. Five variants including c.1393C > T, c.4111 + 5G>C, c.1142delC, c.2285_2286delCT, and c.1719delG had not been previously reported. Furthermore, we report the c.149A > G variant for the first time in a Chinese TCS patient. We provided prenatal diagnosis for family 4. Proband 7 chose interventional surgery. CONCLUSION: We identified five novel variants in TCOF1 in Chinese patients with TCS, which expands the mutation spectrum of TCOF1 in TCS. Bone conduction hearing rehabilitation can improve hearing for TCS patients and prenatal diagnosis can provide fertility guidance for TCS families.
Assuntos
Disostose Mandibulofacial/genética , Mutação/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , China , Análise Mutacional de DNA , Orelha/patologia , Face/patologia , Feminino , Perda Auditiva Condutiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
BACKGROUND: Sucrose phosphate synthase (SPS) genes play vital roles in sucrose production across various plant species. Modern sugarcane cultivar is derived from the hybridization between the high sugar content species Saccharum officinarum and the high stress tolerance species Saccharum spontaneum, generating one of the most complex genomes among all crops. The genomics of sugarcane SPS remains under-studied despite its profound impact on sugar yield. RESULTS: In the present study, 8 and 6 gene sequences for SPS were identified from the BAC libraries of S. officinarum and S. spontaneum, respectively. Phylogenetic analysis showed that SPSD was newly evolved in the lineage of Poaceae species with recently duplicated genes emerging from the SPSA clade. Molecular evolution analysis based on Ka/Ks ratios suggested that polyploidy reduced the selection pressure of SPS genes in Saccharum species. To explore the potential gene functions, the SPS expression patterns were analyzed based on RNA-seq and proteome dataset, and the sugar content was detected using metabolomics analysis. All the SPS members presented the trend of increasing expression in the sink-source transition along the developmental gradient of leaves, suggesting that the SPSs are involved in the photosynthesis in both Saccharum species as their function in dicots. Moreover, SPSs showed the higher expression in S. spontaneum and presented expressional preference between stem (SPSA) and leaf (SPSB) tissue, speculating they might be involved in the differentia of carbohydrate metabolism in these two Saccharum species, which required further verification from experiments. CONCLUSIONS: SPSA and SPSB genes presented relatively high expression and differential expression patterns between the two Saccharum species, indicating these two SPSs are important in the formation of regulatory networks and sucrose traits in the two Saccharum species. SPSB was suggested to be a major contributor to the sugar accumulation because it presented the highest expressional level and its expression positively correlated with sugar content. The recently duplicated SPSD2 presented divergent expression levels between the two Saccharum species and the relative protein content levels were highest in stem, supporting the neofunctionalization of the SPSD subfamily in Saccharum.
Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Especificidade da Espécie , Regulação da Expressão Gênica de Plantas , Variação GenéticaRESUMO
BACKGROUND Increasing studies have shown the important clinical role of immune and stromal cells in gastric cancer microenvironment. Based on information of immune and stromal cells in The Cancer Genome Atlas, this study aimed to construct a prognostic risk assessment model for gastric cancer. MATERIAL AND METHODS Based on the immune/structural scores, differentially expressed genes (DEGs) were filtered and analyzed. Afterwards, DEGs associated with prognosis were screened and the risk assessment model was constructed in the training set. Moreover, the validity of the model was verified both in the testing set and the overall sample. RESULTS In this study, patients were divided into high-score and low-score groups based on immune/stromal score, and 919 DEGs were identified. By applying least absolute shrinkage and selection operator (LASSO) and Cox analysis, 10 mRNAs were selected to form a prognostic risk assessment model, risk score=(0.294*SLC17A9) + (-0.477*FERMT3) + (0.866*NRP1) + (0.350*MMRN1) + (0.381*RNASE1) + (0.189*TRIB3) + (0.230*PGAP3) + (0.087*MAGEA3) + (0.182*TACR2) + (0.368*CYP51A1). In the training set, the low-risk group divided by the model was found to have better overall survival, and the prediction efficiency of the model was demonstrated to be good. Multivariate Cox analysis indicated that the model could work as a prognostic factor independently. Similar results were shown in the testing group and overall patients cohort group. Finally, the risk assessment model and other clinical variables were integrated to construct a nomogram. CONCLUSIONS In general, this study constructs a prognostic risk assessment model for gastric cancer, which could improve the prognosis stratification of patients combined with other clinical indicators.
Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , RNA Neoplásico/genética , Neoplasias Gástricas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Área Sob a Curva , Biomarcadores Tumorais/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Neoplásico/imunologia , Curva ROC , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Células Estromais/imunologia , Células Estromais/patologia , Análise de Sobrevida , Transcriptoma , Microambiente Tumoral/genéticaRESUMO
Specificity is a crucial condition that hampers the application of non-viral vectors for cancer gene therapy. In a previous study, we developed an efficient gene vector, stearyl-CAMEL, using N-terminal stearylation of the antimicrobial peptide CAMEL. Substance P (SP), an 11-residue neuropeptide, rapidly enters cells after binding to the neurokinin-1 receptor (NK1R), which is expressed in many cancer cell lines. In this study, the NK1R-targeted gene vector stearyl-CMSP was constructed by conjugating SP to the C-terminus of stearyl-CAMEL. Our results indicated that stearyl-CMSP displayed significant transfection specificity for NK1R-expressing cells compared with that shown by stearyl-CAMEL. Accordingly, the stearyl-CMSP/p53 plasmid complexes had significantly higher antiproliferative activity against HEK293-NK1R cells than they did against HEK293 cells, while the stearyl-CAMEL/p53 plasmid complexes did not show this specificity in antiproliferative activity. Consequently, conjugation of the NK1R-targeted ligand SP is a simple and successful strategy to construct efficient cancer-targeted non-viral gene vectors.