Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(51): 28224-28232, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108623

RESUMO

By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.


Assuntos
DNA , Transdução de Sinais , Engenharia Genética , Bactérias/genética , Percepção de Quorum
2.
J Am Chem Soc ; 144(49): 22458-22469, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446637

RESUMO

Although engineered T cells with transgenic chimeric antigen receptors (CARs) have made a breakthrough in cancer therapeutics, this approach still faces many challenges in the specificity, efficacy, and self-safety of genetic engineering. Here, we developed a nano-biohybrid DNA engager-reprogrammed T-cell receptor (EN-TCR) system to improve the specificity and efficacy, mitigate the excessive activation, and shield against risks from transgenesis, thus achieving a diversiform and precise control of the T-cell response. Utilizing modular assembly, the EN-TCR system can graft different specificities on T cells via antibody assembly. Besides, the designability of DNA hybridization enables precise target recognition by the library of multiantigen cell recognition circuits and allows gradual tuning of the T-cell activation level by the signaling switch and independent control over different types of T cells. Furthermore, we demonstrated the effectiveness of the system in tumor models. Together, this study provides a nongenetic T-cell engineering strategy to overcome major hindrances in T-cell therapy and may be extended to a general and convenient cell engineering strategy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Ativação Linfocitária , Neoplasias/metabolismo , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA