Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1107551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969821

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is a leading cause of cirrhosis and hepatocellular carcinoma. Due to its complex pathophysiology, there is currently no approved therapy. Polysaccharide, a kind of natural product, possesses a wide range of pharmacological activities. Numerous preclinical studies have confirmed that polysaccharides could interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improvement of glucose and lipid metabolism, antioxidation, anti-inflammation, and regulation of gut-liver axis, thus showing great potential as novel anti-NAFLD drugs. In this paper, we reviewed the polysaccharides with anti-NAFLD effect in recent years, and also systematically analyzed their possible pharmacological mechanisms.

2.
Sci Rep ; 9(1): 14815, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616011

RESUMO

Glioblastoma is a malignant brain tumor with mean overall survival of less than 15 months. Blood vessel leakage and peritumoral edema lead to increased intracranial pressure and augment neurological deficits which profoundly decrease the quality of life of glioblastoma patients. It is unknown how the dynamics of cerebrospinal fluid (CSF) turnover are affected during this process. By monitoring the transport of CSF tracers to the systemic blood circulation after infusion into the cisterna magna, we demonstrate that the outflow of CSF is dramatically reduced in glioma-bearing mice. Using a combination of magnetic resonance imaging (MRI) and near-infrared (NIR) imaging, we found that the circulation of CSF tracers was hindered after cisterna magna injection with reduced signals along the exiting cranial nerves and downstream lymph nodes, which represent the major CSF outflow route in mice. Due to blockage of the normal routes of CSF bulk flow within and from the cranial cavity, CSF tracers were redirected into the spinal space. In some mice, impaired CSF clearance from the cranium was compensated by a lymphatic outflow from the sacral spine.


Assuntos
Neoplasias Encefálicas/complicações , Líquido Cefalorraquidiano/fisiologia , Glioblastoma/complicações , Sistema Glinfático/fisiopatologia , Hipertensão Intracraniana/fisiopatologia , Animais , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral/transplante , Cisterna Magna/diagnóstico por imagem , Cisterna Magna/fisiopatologia , Modelos Animais de Doenças , Feminino , Glioblastoma/líquido cefalorraquidiano , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Humanos , Hidrodinâmica , Hipertensão Intracraniana/líquido cefalorraquidiano , Hipertensão Intracraniana/etiologia , Imageamento por Ressonância Magnética , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho
3.
Sci Adv ; 4(8): eaat4758, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30101193

RESUMO

Tumor lymphangiogenesis is accompanied by a higher incidence of sentinel lymph node metastasis and shorter overall survival in several types of cancer. We asked whether tumor lymphangiogenesis might also occur in distant organs with established metastases and whether it might promote further metastatic spread of those metastases to other organs. Using mouse metastasis models, we found that lymphangiogenesis occurred in distant lung metastases and that some metastatic tumor cells were located in lymphatic vessels and draining lymph nodes. In metastasis-bearing lungs of melanoma patients, a higher lymphatic density within and around metastases and lymphatic invasion correlated with poor outcome. Using a transgenic mouse model with inducible expression of vascular endothelial growth factor C (VEGF-C) in the lung, we found greater growth of lung metastases, with more abundant dissemination to other organs. Our findings reveal unexpected contributions of lymphatics in distant organs to the promotion of growth of metastases and their further spread to other organs, with potential clinical implications for adjuvant therapies in patients with metastatic cancer.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Linfangiogênese , Vasos Linfáticos/patologia , Melanoma Experimental/patologia , Neovascularização Patológica/patologia , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Vasos Linfáticos/metabolismo , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
4.
Curr Opin Immunol ; 53: 7-12, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605736

RESUMO

Sentinel lymph node metastasis is a prognostic indicator for systemic tumor spread in many types of cancers, and tumor lymphangiogenesis correlates with reduced survival. Consequently, lymphatic vessels have been suggested to promote tumor progression in multiple ways. Tumor lymphangiogenesis occurs both in primary tumors and at distant (pre-) metastatic sites, and facilitates lymphatic invasion and tumor cell dissemination. Lymphatic vessels have also emerged as regulators of tumor immunity, transporting tumor antigens to lymph nodes and directly interacting with immune cells. Furthermore, lymphatic vessels might provide a 'lymphovascular' niche contributing to the maintenance of stem-like tumor cells that are tightly related to tumor recurrence. Thus, targeting tumor lymphangiogenesis or specific lymphatic-associated functions might represent a promising approach to inhibit tumor progression.


Assuntos
Carcinogênese , Metástase Linfática , Vasos Linfáticos/fisiologia , Células-Tronco Neoplásicas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Humanos , Linfangiogênese
5.
Cell Rep ; 13(7): 1493-1504, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26549461

RESUMO

VEGF-C/VEGFR-3 signaling plays a central role in lymphatic development, regulating the budding of lymphatic progenitor cells from embryonic veins and maintaining the expression of PROX1 during later developmental stages. However, how VEGFR-3 activation translates into target gene expression is still not completely understood. We used cap analysis of gene expression (CAGE) RNA sequencing to characterize the transcriptional changes invoked by VEGF-C in LECs and to identify the transcription factors (TFs) involved. We found that MAFB, a TF involved in differentiation of various cell types, is rapidly induced and activated by VEGF-C. MAFB induced expression of PROX1 as well as other TFs and markers of differentiated LECs, indicating a role in the maintenance of the mature LEC phenotype. Correspondingly, E14.5 Mafb(-/-) embryos showed impaired lymphatic patterning in the skin. This suggests that MAFB is an important TF involved in lymphangiogenesis.


Assuntos
Linfangiogênese , Fator de Transcrição MafB/fisiologia , Transcriptoma , Animais , Antígenos de Diferenciação/metabolismo , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Desenvolvimento Embrionário , Endotélio Linfático/metabolismo , Perfilação da Expressão Gênica , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Clin Exp Med ; 8(10): 17530-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770344

RESUMO

Omp25 protein, an outer membrane protein of Brucella, can cause damage to the central nervous system. As one type of macrophage, microglial cells play a role in immune surveillance and immune protection in the central nervous system; therefore, they are major targets of bacterial attack. The present study examined BV2 mouse microglial cells that were stimulated with different concentrations of Omp25 recombinant protein, and the secretion of inflammatory cytokines by the BV2 cells as well as their level of apoptosis were observed. The objective of the study was to preliminarily illustrate the possible mechanism that Omp25 uses to damage the central nervous system. Mouse BV2 microglial cells were incubated with different concentrations of Omp25 for 24 h, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α and HMGB1 (high mobility group box-1 protein); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TLR4 (Toll-like receptor 4) mRNA; Annexin V-fluorescein isothiocyanate (FITC) double staining was used to detect apoptosis in the BV2 cells. After the BV2 cells were stimulated with different concentrations of Omp25, the levels of IL-6, TNF-α and HMGB1 was increased, and the difference was statistically significant compared with the control group (P<0.05). The secretion of TNF-α and HMGB1 showed a trend toward an initial increase followed by a decrease. The expression level of TLR4 mRNA was increased. Omp25 protein can inhibit apoptosis in BV2 cells. The outer membrane protein Omp25 of Brucella promotes microglial cells to secrete inflammatory cytokines and inhibit apoptosis. TLR4 may be involved in the immune response of the central nervous system to Brucella infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA