Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 134: 112174, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703571

RESUMO

CD19-directed chimeric antigen receptor (CAR) T cell therapy has been shown to achieve a considerably durable response in patients with refractory or relapsed B cell non-Hodgkin lymphomas. Most of these CARs were generated by lentivirus. With the exception of Yescarta and Tecartus, few patients with relapsed-/refractory- lymphoma have been treated clinically with a CARs using retroviral vector (RV). Here, we reported a relapsed/refractory grade 2 follicular lymphoma patient with multiple chemotherapy failures, and was treated with a novel CD19 CAR-T cell manufactured from a RV. After tumor burden was reduced with Obinutuzumab and Duvelisib, the patient was infused novel CD19 CAR-T cells at a dose of 3 × 106 cells/ kg. Then he experienced a rapid response and achieved almost complete remission by day 26. Only grade 2 CRS, bilateral submaxillary lymph node enlargement and cytomegalovirus (CMV) infection occurred without neurotoxicity, and the patient's condition improved after a series of symptomatic treatments. In addition, CAR copy number peaked at 532,350 copies/µg on day 15 and continued to expand for 5 months. This may be the first case report of RV preparation of novel CD19 CAR-T cells for direct treatment of recurrent follicular lymphoma. We will observe its long-term efficacy and conduct trials in more patients in the future.


Assuntos
Antígenos CD19 , Infecções por Citomegalovirus , Imunoterapia Adotiva , Linfoma Folicular , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos CD19/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/terapia , Imunoterapia Adotiva/métodos , Linfoma Folicular/terapia , Linfoma Folicular/imunologia , Recidiva Local de Neoplasia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento
2.
Biomed Pharmacother ; 170: 116016, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128180

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological malignancy. Frequent peritoneal dissemination is the main cause of low survival rate. Guizhi-Fuling Wan (GZFL) is a classical traditional Chinese herbal formula that has been clinically used for treating ovarian cancer with good outcome. However, its therapeutic mechanism for treating OC has not been clearly elucidated. PURPOSE: We aim to elucidate the potential mechanisms of GZFL in treating OC with a focus on STAT3 signaling pathway. METHODS: In vivo efficacy of GZFL was assessed using an OC xenograft mouse model. Proteomics analysis in OC cells and RNA-seq analysis in mice tumors were performed to fully capture the translational and transcriptional signature of GZFL. Effects of GZFL on proliferation, spheroid formation and reactive oxygen species (ROS) were assessed using wildtype and STAT3 knockout OC cells in vitro. STAT3 activation and transcription activity, hypoxia and EMT-related protein expression were assessed to validate the biological activity of GZFL. RESULTS: GZFL suppresses tumor growth with a safety profile in mice, while prevents cell growth, spheroid formation and accumulates ROS in a STAT3-dependent manner in vitro. GZFL transcriptionally and translationally affects genes involved in inflammatory signaling, EMT, cell migration, and cellular hypoxic stress response. In depth molecular study confirmed that GZFL-induced cytotoxicity and EMT suppression in OC cells are directly corelated to inhibition of STAT3 activation and transcription activity. CONCLUSION: Our study provides the first evidence that GZFL inhibits OC progression through suppressing STAT3-EMT signaling. These results will further support its potential clinical use in OC.


Assuntos
Neoplasias Ovarianas , Proteômica , Humanos , Camundongos , Feminino , Animais , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo
3.
J Ethnopharmacol ; 295: 115398, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605921

RESUMO

ETHNOPHARMACOLOGICAL RELEVANT: Yangjing Zhongyu decoction (YJZYD) is a recipe from a Chinese classic medical work and has been empirically used in female infertility for hundreds of years, but the mechanisms of YJZYD on facilitating ovarian granulosa cells remain unfold. AIM OF THE RESEARCH: The purpose of the study is to determine the rewarding effects of YJZYD on H2O2-induced KGN cells, involving mitochondrial activity, estradiol biosynthesis, and energy metabolism. MATERIALS AND METHODS: The ingredients of YJZYD were investigated by UPLC-ESI-MS/MS analysis. The effects of YJZYD and H2O2 on cell viability were determined by CCK-8. Intracellular ROS were assessed by DCFH-DA. Intracellular Ca2+ was detected using Fura-4 AM. Mitochondrial membrane potential (MMP) was measured by JC-1. The production of energy was assessed by ATP. Apoptosis rate was analyzed by Annexin V-FITC/PI. Western blotting was used to evaluate the expression of proteins related to energy metabolism, apoptosis, mitochondrial mitophagy, and estrogen biosynthesis. E2 levels were measured by ELISA. RESULTS: 121 compounds were identified in YJZYD by UPLC-ESI-MS/MS analysis. YJZYD could enhance mitochondrial activity by suppressing intracellular ROS and Ca2+, and increasing MMP and ATP content. YJZYD stimulated the expression of anti-apoptosis protein Bcl-2 and lowered the early apoptosis rate and the expression of Bax. Besides, YJZYD rescued E2 secretion and improved the expression of FSHR, CYP19A1, and the ratio of p-CREB/CREB. In addition, YJZYD weakened H2O2-induced mitophagy by compromising the expression of PINK1, Parkin, Beclin1 and P62. Moreover, YJZYD strengthened energy metabolism by increasing ATP generation and the expression of SIRT1, PGC1α, NRF1, and COX IV. The combination of YJZYD and autophagy inhibitor had a stronger protective effect on energy metabolism. CONCLUSION: This study evaluated the protective effects of YJZYD on H2O2-induced KGN cells. YJZYD could enhance mitochondrial activity, E2 biosynthesis, and energy metabolism. These results strongly indicated that YJZYD might play a role in preserving ovarian granulosa cells and female fecundity.


Assuntos
Peróxido de Hidrogênio , Espectrometria de Massas em Tandem , Feminino , Humanos , Trifosfato de Adenosina/metabolismo , Apoptose , Medicamentos de Ervas Chinesas , Células da Granulosa , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
4.
J Ethnopharmacol ; 289: 115045, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35101570

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Goiter with hypothyroidism occurs in several thyroid diseases. Xiao-Luo-Wan (XLW), which contains Scrophularia ningpoensis Hemsl., Fritillaria thunbergii Miq. and Ostrea gigas Thunberg, has been used as an effective Chinese medicine for the treatment of goiters in China for hundreds of years. Based on clinical observations and experimental studies, XLW also exerts a certain effect on hypothyroidism. However, the therapeutic mechanism of XLW remains unclear. AIM OF THE STUDY: The present study aimed to investigate the therapeutic effect of XLW on propylthiouracil (PTU)-induced goiter with hypothyroidism in rats and to uncover the underlying molecular mechanism using ultra high-performance liquid chromatography-mass spectrometry (UPLC/MS), network pharmacology, and molecular docking simulations. MATERIALS AND METHODS: After successful modeling, the remaining rats were randomly divided into a model group, an Euthyrox group, an XLW group, and a control group. The corresponding drugs were given by gavage for four consecutive weeks. The growth status was monitored, the relative thyroid weight was calculated, and the total serum T3, T4, and TSH content were detected. Hematoxylin-eosin (H&E) staining was used to observe the pathological changes in the thyroid glands. The chemical components of the XLW were identified by UPLC/MS and the putative targets of XLW were predicted using multiple databases. We performed network pharmacology based on the intersection of goiter/hypothyroidism-related targets and XLW targets. Then, we performed KEGG pathway enrichment analysis, and key targets were further screened using protein-protein interaction (PPI) networks. Finally, molecular docking was used to predict the binding ability of XLW identified components and the key targets. RESULTS: XLW significantly increased the levels of T3 and T4, and reduced TSH, increased body weight, and decreased swollen thyroid glands in PTU-induced rats. XLW promoted the morphological recovery of thyroid follicles and epithelial cells. Twenty-one main chemical components of XLW were identified using UPLC/MS. 270 potential gene targets of XLW and 717 known targets of goiter/hypothyroidism disease were obtained by searching the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Swiss Target Prediction, and UniProt databases. A total of 83 KEGG pathways were enriched with phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) and RAS signaling pathways. PPI analysis revealed nine key targets of kinase-protein kinase B (AKT) 1, interleukin (IL) 6, vascular endothelial growth factor A (VEGFA), tumor necrosis factor (TNF), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), epidermal growth factor receptor (EGFR), GTPase HRas (HRAS), matrix metalloproteinase (MMP) 9, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). Molecular docking verified which drug components had good binding ability to key targets (all ≤5 kcal/mol). CONCLUSION: For PTU-induced goiter with hypothyroidism in rats, XLW improves thyroid function, reduces goiter, increases body weight, and promotes the recovery of thyroid follicles and epithelial cells. The underlying molecular mechanism suggests that XLW may regulate thyroid hormone signaling by regulating the PI3K-AKT, RAS, and other signaling pathways. This study provides a pharmacological and biological basis for using XLW to treat goiter with hypothyroidism.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Bócio/tratamento farmacológico , Hipotireoidismo/tratamento farmacológico , Animais , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Masculino , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinase/metabolismo , Propiltiouracila , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA