Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 15(1): 96, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221560

RESUMO

Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer's disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aß42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aß42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aß42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aß metabolism and can be a potential target of treatment.


Assuntos
Apolipoproteína E4 , Apolipoproteínas E , Humanos , Glicosilação , Alelos , Projetos Piloto
2.
J Biol Chem ; 288(6): 4056-65, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23264626

RESUMO

The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Comportamento Animal/efeitos dos fármacos , Curcumina/farmacologia , Proteínas de Choque Térmico/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sinapses/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína 4 Homóloga a Disks-Large , Feminino , Proteínas de Choque Térmico/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Multimerização Proteica/genética , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidade/efeitos dos fármacos , Sinapses/genética , Sinapses/patologia , Tauopatias/tratamento farmacológico , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
3.
J Neural Transm (Vienna) ; 118(8): 1155-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21331461

RESUMO

Although abnormal aggregation of α-synuclein (α-syn) is involved in several neurodegenerative diseases, its biological functions remain poorly understood, which limits our understanding of its pathogenic mechanisms. α-Syn exhibits MAP-like activity and promotes the assembly of microtubules. Since microtubules play a pivotal role in proliferative cell division, it is possible that α-syn affects cell proliferation by facilitating microtubule assembly. The role of α-syn in promoting cell proliferation was reported previously in PC12 dopaminergic cells overexpressing α-syn. Here, we extended this study aiming at finding the association between the cell proliferation effect of α-syn and its microtubule assembly activity, and identifying the potential active domain for the effect of α-syn on cell proliferation. By exploiting the property that the 11-mer repeats of synuclein molecules are able to mediate a rapid intracellular translocation of these proteins across the plasma membrane without being degraded by the cellular proteolytic system, we added recombinant full-length α-syn (wild type and A53T and A30P mutants) and ß-syn to the culture medium of MES23.5 dopaminergic cells, and observed their intracellular translocation, subcellular distribution and effects on cell proliferation. We found that all the synuclein molecules could enter the cells where they were localized in both the cytoplasm and nucleus. However, only the wild-type α-syn, which had been shown to have microtubule assembly activity, was able to promote proliferation of the MES23.5 cells. The A53T and A30P mutant α-syn as well as ß-syn, which had been proved not to possess microtubule assembly activity, did not exhibit any effect on cell proliferation. Since the α-syn activity in microtubule assembly was shown to be related to its specific functional domain, we then generated different functional fragments (N-terminal aa1-65, NAC aa61-95 and C-terminal aa96-140) and tested their activities in cell proliferation. We showed that all the α-syn fragments could enter the cells, but with different subcellular localizations. The N-terminal and NAC fragments were localized in the cytoplasm and the C-terminal fragment mainly in the nucleus. In accordance with the activity for the C-terminal part of α-syn in microtubule assembly, only the NAC and C-terminal fragments exhibited the activity in cell proliferation. The N-terminal fragment without microtubule assembly activity did not promote cell proliferation. The above results suggest that the α-syn function in promoting cell proliferation is associated with its microtubule assembly activity with the functional domain localized in its C-terminal part.


Assuntos
Proliferação de Células , Neurônios Dopaminérgicos/fisiologia , alfa-Sinucleína/química , alfa-Sinucleína/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Microtúbulos/química , Microtúbulos/fisiologia , Estrutura Terciária de Proteína/fisiologia
4.
J Neurosci ; 27(52): 14299-307, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18160637

RESUMO

Environmental and genetic factors, notably ApoE4, contribute to the etiology of late-onset Alzheimer's disease (LOAD). Reduced mRNA and protein for an apolipoprotein E (ApoE) receptor family member, SorLA (LR11) has been found in LOAD but not early-onset AD, suggesting that LR11 loss is not secondary to pathology. LR11 is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate beta-amyloid (Abeta). Genetic polymorphisms that reduce LR11 expression are associated with increased AD risk. However these polymorphisms account for only a fraction of cases with LR11 deficits, suggesting involvement of environmental factors. Because lipoprotein receptors are typically lipid-regulated, we postulated that LR11 is regulated by docosahexaenoic acid (DHA), an essential omega-3 fatty acid related to reduced AD risk and reduced Abeta accumulation. In this study, we report that DHA significantly increases LR11 in multiple systems, including primary rat neurons, aged non-Tg mice and an aged DHA-depleted APPsw AD mouse model. DHA also increased LR11 in a human neuronal line. In vivo elevation of LR11 was also observed with dietary fish oil in young rats with insulin resistance, a model for type II diabetes, another AD risk factor. These data argue that DHA induction of LR11 does not require DHA-depleting diets and is not age dependent. Because reduced LR11 is known to increase Abeta production and may be a significant genetic cause of LOAD, our results indicate that DHA increases in SorLA/LR11 levels may play an important role in preventing LOAD.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Receptores de LDL/metabolismo , Fatores Etários , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Ratos , Ratos Sprague-Dawley , Receptores de LDL/genética , Fatores de Tempo
5.
J Neurochem ; 103(4): 1594-607, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17760871

RESUMO

Extracellular-signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer's disease transgene APPsw and beta-amyloid peptide (Abeta) immunoneutralization on cannulation injury-associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma-associated activation of ERK observed in Tg(-) mice was dramatically attenuated in Tg(+). In cortices of 22-month-old non-infused mice, a reduction in ERK activation was observed in Tg(+), relative to Tg(-) mice. Intracerebroventricular (i.c.v.) anti-Abeta infusion significantly increased phosphorylated ERK, its substrate cAMP-response element-binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Abeta oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Abeta oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post-synaptic protein NMDA receptor subunit. These effects were reversed by anti-oligomer. Our data strongly support the existence of an APPsw transgene-dependent and Abeta oligomer-mediated defect in regulation of ERK activation.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/fisiologia , Proteína de Ligação a CREB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Transgenes/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Camundongos , Camundongos Transgênicos
6.
J Neurosci Res ; 83(3): 374-84, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16385556

RESUMO

Although active and passive immunization against the beta-amyloid peptide (Abeta) of amyloid plaque-bearing transgenic mice markedly reduces amyloid plaque deposition and improves cognition, the mechanisms of neuroprotection and impact on toxic oligomer species are not understood. We demonstrate that compared to control IgG2b, passive immunization with intracerebroventricular (icv) anti-Abeta (1-15) antibody into the AD HuAPPsw (Tg2576) transgenic mouse model reduced specific oligomeric forms of Abeta, including the dodecamers that correlate with cognitive decline. Interestingly, the reduction of soluble Abeta oligomers, but not insoluble Abeta, significantly correlated with reduced tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta), a major tau kinase implicated previously in mediating Abeta toxicity. A conformationally-directed antibody against amyloid oligomers (larger than tetramer) also reduced Abeta oligomer-induced activation of GSK3beta and protected human neuronal SH-SY5Y cells from Abeta oligomer-induced neurotoxicity, supporting a role for Abeta oligomers in human tau kinase activation. These data suggest that antibodies that are highly specific for toxic oligomer subspecies may reduce toxicity via reduction of GSK-3beta, which could be an important strategy for Alzheimer's disease (AD) therapeutics.


Assuntos
Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/farmacologia , Reativadores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Western Blotting/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ativação Enzimática/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Neuroblastoma , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Distribuição Aleatória , Coloração pela Prata/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA