Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748775

RESUMO

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Assuntos
Tolerância Imunológica , Interleucina-6 , Células Matadoras Naturais , Células Supressoras Mieloides , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-6/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Animais , Humanos , Transdução de Sinais , Microambiente Tumoral/imunologia , Camundongos Knockout , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256918

RESUMO

In this study, the total synthesis of osajin, scandenone and their analogues have been accomplished. The key synthetic steps include aldol/intramolecular iodoetherification/elimination sequence reactions and a Suzuki coupling reaction to assemble the tricyclic core, chemoselective propargylation and Claisen rearrangement reactions to obtain natural compounds. In addition, we also designed and synthesized twenty-five natural product analogues. All synthetic compounds were screened for anti-inflammatory activity against tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Collectively, Compound 39e and 39d were considered as promising lead compounds for further development.

3.
J Cell Mol Med ; 28(1): e18022, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929660

RESUMO

Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
4.
Gastric Cancer ; 26(2): 250-263, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602696

RESUMO

BACKGROUND: Gastric cancer is the fourth leading cause of cancer-related deaths worldwide. And patient outcomes are poor due to tumor relapse and metastasis. To develop new therapeutic strategies, it is of great importance to explore the mechanism underlying the progression of gastric cancer. METHODS: Primary gastric cancer samples with lymph node metastases (LNM) and without LNM were subjected to mRNA microarray assay. The differentially expressed genes were confirmed by RT-qPCR. HRCT1 protein expression was further detected using an immunohistochemistry (IHC) assay. In vitro and in vivo assays were performed to investigate the role of HRCT1 in tumor invasion, metastasis, and proliferation. The expressions of the downstream target genes of HRCT1 were detected by microarray, RT-qPCR and Western blot assays. Dual-luciferase reporter and Western blot assays were carried out to identify miRNAs target to HRCT1. RESULTS: HRCT1 was upregulated in gastric cancer, and high expression of HRCT1 was associated with poor overall survival (OS) and disease-free survival (DFS). Moreover, HRCT1protein expression was an independent predictor for poor OS and DFS. HRCT1 could promote gastric cancer cells' migration, invasion, and proliferation in vitro as well as tumor metastasis and growth in vivo. Notably, our data showed that HRCT1 promoted gastric cancer progression by activating the ERBB2-MAPK signaling pathway. At least partially, the expression of HRCT1 could be negatively regulated by miR-124-3p. CONCLUSIONS: The upregulated expression of HRCT1 predicts poor survival for patients with gastric cancer. HRCT1 promotes tumor progression by activating the ERBB2-MAPK pathway. HRCT1, negatively regulated by miR-124-3p, may be a potential therapeutic target for patients with gastric cancer.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Transdução de Sinais , Metástase Linfática , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Receptor ErbB-2/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(1): e2209856120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574653

RESUMO

Breast cancer (BC) is a complex disease comprising multiple distinct subtypes with different genetic features and pathological characteristics. Although a large number of antineoplastic compounds have been approved for clinical use, patient-to-patient variability in drug response is frequently observed, highlighting the need for efficient treatment prediction for individualized therapy. Several patient-derived models have been established lately for the prediction of drug response. However, each of these models has its limitations that impede their clinical application. Here, we report that the whole-tumor cell culture (WTC) ex vivo model could be stably established from all breast tumors with a high success rate (98 out of 116), and it could reassemble the parental tumors with the endogenous microenvironment. We observed strong clinical associations and predictive values from the investigation of a broad range of BC therapies with WTCs derived from a patient cohort. The accuracy was further supported by the correlation between WTC-based test results and patients' clinical responses in a separate validation study, where the neoadjuvant treatment regimens of 15 BC patients were mimicked. Collectively, the WTC model allows us to accomplish personalized drug testing within 10 d, even for small-sized tumors, highlighting its potential for individualized BC therapy. Furthermore, coupled with genomic and transcriptomic analyses, WTC-based testing can also help to stratify specific patient groups for assignment into appropriate clinical trials, as well as validate potential biomarkers during drug development.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Perfilação da Expressão Gênica , Biomarcadores , Técnicas de Cultura de Células , Microambiente Tumoral
6.
Cell Death Dis ; 13(11): 982, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414640

RESUMO

Breast cancer (BC) is the most common malignant tumor in women worldwide. Metastasis is the main cause of BC-related death. The specific mechanism underlying BC metastasis remains obscure. Recently, PRSS22 was discovered to be involved in tumor development, however, its detailed biological function and regulatory mechanism in BC are unclear. Here, we characterized that PRSS22 expression is upregulated in BC tissues compared with non-tumorous breast tissues. Dual luciferase assays, bioinformatics analyses and chromatin immunoprecipitation (ChIP) assays indicated that transcription factor E2F1 directly binds to the PRSS22 promoter region and activates its transcription. Functionally, upregulation of PRSS22 promoted invasion and metastasis of BC cells in vitro and in vivo, whereas knockdown of PRSS22 inhibited its function. Mechanistically, the combination of PRSS22 and ANXA1 protein in BC cells was first screened by protein mass spectrometry analysis, and then confirmed by co-immunoprecipitation (Co-IP) and western blot assays. Co-overexpression of PRSS22 and ANXA1 could promote BC cell migration and invasion. We further demonstrated that PRSS22 promotes the cleavage of ANXA1 and in turn generates an N-terminal peptide, which initiates the FPR2/ERK signaling axis to increase BC aggressiveness.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Transdução de Sinais , Melanoma Maligno Cutâneo
7.
JMIR Form Res ; 6(4): e31870, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363148

RESUMO

BACKGROUND: Lower extremity complications of diabetes represent major health care complications both in terms of cost and impact to quality of life for patients with diabetic peripheral neuropathy. Temperature monitoring has been shown in previous studies to provide a useful signal of inflammation that may indicate the early presence of a foot injury. OBJECTIVE: In this study, we evaluated the temperature data for patients that presented with a diabetic foot injury while using a sock-based remote temperature monitoring device. METHODS: The study abstracted data from patients who were enrolled in a remote temperature monitoring program (2020-2021) using a smart sock (Siren Care). In the study cohort, a total of 5 participants with a diabetes-related lower extremity injury during the study period were identified. In the second comparison cohort, a total of 26 patients met the criteria for monitoring by the same methods but did not present with a diabetes-related podiatric lower extremity injury during the same period. The 15-day temperature differential between 6 defined locations on each foot was the primary outcome measure among subjects who presented with a diagnosed foot injury. Paired t tests were used to compare the differences between the two groups. RESULTS: A significant difference in temperature differential (temperature measured in °F) was observed in the group that presented with a podiatric injury over the course of evaluation versus the comparator group that did not present with a podiatric injury. The average difference from all 6 measured points was 1.4 °F between the injury group (mean 3.6, SD 3.0) and the comparator group (mean 2.2, SD 2.5, t=-71.4, df=39; P<.001). CONCLUSIONS: The results of this study suggest temperature monitoring in a sock form factor could be used to predict a developing foot injury. The continuous temperature monitoring system employed has implications for further algorithm development to enable early detection. The study was limited by a nonrandomized, observational design with limited injuries present in the study period. We look forward to further studies that will refine the predictive potential and confirm or refute the current promising data.

8.
Cell Death Differ ; 29(3): 627-641, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34608273

RESUMO

Long noncoding RNAs (lncRNAs) are dysregulated in different cancer types, and thus have emerged as important regulators of the initiation and progression of human cancers. However, the biological functions and the underlying mechanisms responsible for their functions in gastric cancer (GC) remain poorly understood. Here, by lncRNA microarray, we identified 1414 differentially expressed lncRNAs, among which THAP7-AS1 was significantly upregulated in GC tissues compared with non-tumorous gastric tissues. High expression of THAP7-AS1 was correlated with positive lymph node metastasis and poorer prognosis. SP1, a transcription factor, could bind directly to the THAP7-AS1 promoter region and activate its transcription. Moreover, the m6A modification of THAP7-AS1 by METTL3 enhanced its expression depending on the "reader" protein IGF2BP1-dependent pathway. THAP7-AS1 promoted GC cell progression. Mechanistically, THAP7-AS1 interacted with the 1-50 Amino Acid Region (nuclear localization signal) of CUL4B through its 1-442 nt Sequence, and it promoted interaction between nuclear localization signal (NLS) and importin α1, and improved the CUL4B protein entry into the nucleus, repressing miR-22-3p and miR-320a expression by CUL4B-catalyzed H2AK119ub1 and the EZH2-mediated H3K27me3, subsequently activating PI3K/AKT signaling pathway to promote GC progression. Moreover, LV-sh-THAP7-AS1 treatment could suppress GC growth, invasion and metastasis, indicating that THAP7-AS1 may act as a promising molecular target for GC therapies. Taken together, our results show that THAP7-AS1, transcriptionally activated by SP1 and then modified by METTL3-mediated m6A, exerts oncogenic functions, by promoting interaction between NLS and importin α1 and then improving the CUL4B protein entry into the nucleus to repress the transcription of miR-22-3p and miR-320a.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Culina , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/patologia
9.
Cancer Lett ; 524: 82-90, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626692

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in cancer development and progression; however, their contributions to gastric cancer metastasis remain largely unknown. By lncRNA microarray screening, our study showed that 453 lncRNAs are dysregulated in gastric cancer tissues with or without lymph node metastasis, of which lnc-LEMGC ranks as one of the most significantly downregulated lncRNAs. Lnc-LEMGC inhibited cell migration and invasion both in vitro and in vivo, by combining with protein DNA-PKcs. Importantly, nucleotides 1300-1800 of lnc-LEMGC prevented DNA-PKcs phosphorylation of serine 2056 and partially abrogated the effects of downstream effectors, ErbB1, SRC and protein tyrosine kinase 2 (FAK), in the epidermal growth factor receptor (EGFR) pathway. The results of this study extend our knowledge of lncRNA's molecular mechanisms, in which lnc-LEMGC functions by directly suppressing the phosphorylation of its combined protein DNA-PKcs and inactivating the DNA-PKcs downstream EGFR signaling.


Assuntos
Receptores ErbB/genética , Quinase 1 de Adesão Focal/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Quinases da Família src/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Neoplasias Gástricas/patologia
10.
Oncogene ; 41(3): 361-371, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34754080

RESUMO

Breast cancer (BC) is the most common cancer in women worldwide, and the exploration of aberrantly expressed genes might clarify tumorigenesis and help uncover new therapeutic strategies for BC. Although RGMA was recently recognized as a tumor suppressor gene, its detailed biological function and regulation in BC remain unclear. Herein, we found that RGMA was downregulated in BC tissues compared with non-tumorous breast tissues, particularly in metastatic BC samples, and that patients with low RGMA expression manifested a poorer prognosis. Furthermore, DNMT1 and DNMT3A were found to be recruited to the RGMA promoter and induced aberrant hypermethylation, resulting in downregulation of RGMA expression in BC. In contrast, RGMA overexpression suppressed BC cell proliferation and colony-formation capabilities and increased BC cell apoptosis. Furthermore, RGMA knockdown accelerated BC cell proliferation and suppressed cellular apoptosis in vitro and in vivo. Reversal of RGMA promoter methylation with 5-Aza-CdR restored RGMA expression and blocked tumor growth. Overall, DNMT1- and DNMT3A-mediated RGMA promoter hypermethylation led to downregulation of RGMA expression, and low RGMA expression contributed to BC growth via activation of the FAK/Src/PI3K/AKT-signaling pathway. Our data thus suggested that RGMA might be a promising therapeutic target in BC.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Prognóstico
11.
Mol Immunol ; 140: 186-195, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735867

RESUMO

Macrophages are highly plastic cells critical for the development of rheumatoid arthritis (RA). Macrophages exhibit a high degree of pro-inflammatory plasticity in RA, accompanied by a metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis. 2-deoxyglucose (2-DG), a glycolysis inhibitor, has previously been shown to exhibit anti-inflammatory and anti-arthritic properties. However, the specific mechanisms of inflammatory modulation by 2-DG remain unclear. This study used 2-DG to treat rats with adjuvant arthritis (AA) and investigated its specific anti-arthritic mechanisms in the murine-derived macrophage cell line RAW264.7 in vitro. 2-DG reduced the arthritis index as well as alleviated cellular infiltration, synovial hyperplasia, and bone erosion in AA rats. Moreover, 2-DG treatment modulated peritoneal macrophage polarization, increasing levels of the arginase1 (Arg1) and decreasing expression of the inducible nitric oxide synthase (iNOS). 2-DG activated AMP-activated protein kinase (AMPK) via phosphorylation and reduced activation of the nuclear factor κB (NF-κB) in peritoneal macrophages of AA rats. In vitro, we verified that 2-DG promoted macrophage transition from M1 to M2-type by upregulating the expression of p-AMPKα and suppressing NF-κB activation in LPS-stimulated RAW264.7 cells. LPS-induced macrophages exhibited a metabolic shift from glycolysis to OXPHOS following 2-DG treatment, as observed by reduced extracellular acidification rate (ECAR), lactate export, glucose consumption, as well as an elevated oxygen consumption rate (OCR) and intracellular ATP concentration. Importantly, changes in polarization and metabolism in response to 2-DG were dampened after AMPKα knockdown. These findings indicate that the anti-arthritic 2-DG effect is mediated by a modulation of macrophage polarization in an AMPK-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Artrite Experimental/patologia , Polaridade Celular , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Animais , Artrite Experimental/enzimologia , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inflamação/patologia , Articulações/patologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , NF-kappa B/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
12.
Oncogene ; 40(14): 2524-2538, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674746

RESUMO

Gastric cancer (GC) is one of the most common malignant neoplasms. Invasion and metastasis are the main causes of GC-related deaths. Recently, kinesins were discovered to be involved in tumor development. The aim of this study was to elucidate the roles of kinesin superfamily protein 26A (KIF26A) in GC and its underlying molecular mechanism in regulating tumor invasion and metastasis. Using real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), we showed that KIF26A expression was lower in GC tissues without lymph node metastasis (LNM) than in nontumorous gastric mucosa, and even lower in GC tissues with LNM than in GC tissues without LNM. Functional experiments showed that KIF26A inhibited migration and invasion of GC cells. We further identified focal-adhesion kinase (FAK), phosphatidylinositol 3-kinase regulatory subunit alpha (PI3KR1), VAV3, Rac1 and p21-activated kinase 2, and ß-PAK (PAK3) as downstream effectors of KIF26A in the focal-adhesion pathway, and we found that KIF26A could regulate FAK mRNA expression through inhibiting c-MYC by MAPK pathway. c-MYC could bind to the promoter of FAK and activate FAK transcription. Moreover, we found that KIF26A-mediated inactivation of the focal-adhesion pathway could reduce the occurrence of the epithelial-to-mesenchymal transition (EMT) by increasing expression of E-cadherin and reducing that of Snail. Luciferase assays and Western blotting revealed that miR-19a and miR-96 negatively regulate KIF26A. Finally, we found that decreased expression of KIF26A has been positively correlated with histological differentiation, Lauren classification, LNM, distal metastasis, and clinical stage, as well as poor survival in patients with GC. These data indicate that KIF26A could inhibit GC migration and invasion by regulating the focal-adhesion pathway and repressing the occurrence of EMT.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , MicroRNAs/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Transdução de Sinais , Neoplasias Gástricas/patologia
13.
Mol Oncol ; 14(10): 2629-2645, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767629

RESUMO

Gastric cancer (GC) is one of the most common cancers around the world. Searching for specific gene expression changes during the development of GC could help identify potential therapy targets. We previously showed that the histone code reader SPIN1 may act as an oncogene in breast cancer. At present, the biological function and regulation of SPIN1 in GC remain unclear. Here, we demonstrate that SPIN1 is upregulated in GC tissues, compared with nontumorous gastric tissues. Increased expression of SPIN1 is closely associated with poor prognosis for patients with GC. Increased SPIN1 expression enhances GC cell proliferation, migration, and invasion and promotes cell cycle progression. Mechanically, SPIN1 sustains GC cell proliferation via activation of the MDM2-p21-E2F1 signaling pathway by binding to H3K4me3 of the MDM2 promoter region. Interestingly, E2F1 could directly bind to the SPIN1 promoter and activate its transcription, thus forming a positive feedback loop. Our data suggest that SPIN1 plays an important role in the development of GC and could be used as a promising prognostic biomarker and therapeutic target for GC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Transcrição E2F1/metabolismo , Retroalimentação Fisiológica , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose/genética , Carcinogênese/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transdução de Sinais , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética
14.
Front Oncol ; 10: 1062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719745

RESUMO

Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.

15.
Front Oncol ; 10: 633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509569

RESUMO

Gastric cancer is one of the most common cancers in the world, and long non-coding RNAs (lncRNAs) play a crucial role in proliferation, metastasis, and invasion of gastric cancer. However, there are very few researches focusing on the effects of lncRNAs on metastatic gastric cancer. In this research, we identify one kind of lncRNA, called AK025387, which is highly expressed in metastatic gastric cancer samples compared with non-metastatic gastric cancer samples. The expression of AK025387 is significantly positively correlated with lymph node metastasis. The in situ hybridization demonstrates that AK025387 is located in both nucleus and cytoplasm, but mostly in cytoplasm. AK025387 promotes gastric cancer cells migratory and invasive ability, but it inhibits apoptosis in vitro. Furthermore, AK025387 regulates Raf-1, mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK), and extracellular signal-regulated kinase (ERK) and is involved in mitogen-activated protein kinase (MAPK) signaling pathway to perform its biological functions. We conclude that AK025387 is highly expressed in metastatic gastric cancer, and its biological functions suggest the potential of AK025387 to be a biomarker of metastatic gastric cancer.

16.
Br J Cancer ; 122(12): 1825-1836, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32336754

RESUMO

BACKGROUND: Accumulating evidence demonstrated that long noncoding RNAs (lncRNAs) played important regulatory roles in many cancer types. However, the role of lncRNAs in gastric cancer (GC) progression remains unclear. METHODS: RT-qPCR assay was performed to detect the expression of HNF1A-AS1 in gastric cancer tissues and the non-tumourous gastric mucosa. Overexpression and RNA interference approaches were used to investigate the effects of HNF1A-AS1 on GC cells. Insight into competitive endogenous RNA (ceRNA) mechanisms was gained via bioinformatics analysis, luciferase assays and an RNA-binding protein immunoprecipitation (RIP) assay, RNA-FISH co-localisation analysis combined with microRNA (miRNA)-pulldown assay. RESULTS: This study displayed that revealed expression of HNF1A-AS1 was associated with positive lymph node metastasis in GC. Moreover, HNF1A-AS1 significantly promoted gastric cancer invasion, metastasis, angiogenesis and lymphangiogenesis in vitro and in vivo. In addition, HNF1A-AS1 was demonstrated to function as a ceRNA for miR-30b-3p. HNF1A-AS1 abolished the function of the miRNA-30b-3p and resulted in the derepression of its target, PIK3CD, which is a core oncogene involved in the progression of GC. CONCLUSION: This study demonstrated that HNF1A-AS1 worked as a ceRNA and promoted PI3K/AKT signalling pathway-mediated GC metastasis by sponging miR-30b-3p, offering novel insights of the metastasis mechanism in GC.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Idoso , Animais , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
17.
Clin Breast Cancer ; 20(2): e113-e126, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899158

RESUMO

BACKGROUND: Breast cancer is the most common cause of cancer-related death in women worldwide. MicroRNA (miRNA) ectopic expression has been reported to be involved in the regulation of gene expression in breast cancer. We screened several differentially expressed miRNAs associated with breast cancer chemoresistance, growth, and metastasis using a miRNA microarray. Increased expression of miR-4472 has been associated with larger breast tumors and chemoresistance. However, the biologic function of miR-4472 and its molecular mechanisms in cancer progression have not yet been reported. MATERIALS AND METHODS: Real-time quantitative polymerase chain reaction was used to measure the expression of miR-4472 in breast cancer tissue and cell lines. The biologic functions of miR-4472 and its target gene were explored using Transwell, cell proliferation, and flow cytometry assays. Bioinformatics tools, dual-luciferase reporter assays, and Western blot were used to identify the target genes of miR-4472. Western blot was used to explain the participation of miR-4472 and target gene in epithelial-to-mesenchymal transition. RESULTS: miR-4472 was significantly upregulated in highly metastatic breast cancer tissues, and its expression was positively associated with larger tumor size and advanced pTNM stage. miR-4472 promoted breast cancer cell metastasis and growth. Repulsive guidance molecule A (RGMA) was a direct target gene of miR-4472. RGMA was identified as a suppressor in cancer metastasis. miR-4472 downregulated expression of RGMA and promoted epithelial-to-mesenchymal transition by suppressing E-cadherin and initiating vimentin, ß-catenin, and Slug. CONCLUSIONS: miR-4472 contributes to the progression of breast cancer by regulating RGMA expression and inducing epithelial-to-mesenchymal transition, indicating that miR-4472/RGMA might serve as a therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Ligadas por GPI/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes , Regulação para Cima
18.
J Clin Invest ; 130(3): 1185-1198, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31770109

RESUMO

High levels of ecto-5'-nucleotidase (CD73) have been implicated in immune suppression and tumor progression, and have also been observed in cancer patients who progress on anti-PD-1 immunotherapy. Although regulatory T cells can express CD73 and inhibit T cell responses via the production of adenosine, less is known about CD73 expression in other immune cell populations. We found that tumor-infiltrating NK cells upregulate CD73 expression and the frequency of these CD73-positive NK cells correlated with larger tumor size in breast cancer patients. In addition, the expression of multiple alternative immune checkpoint receptors including LAG-3, VISTA, PD-1, and PD-L1 was significantly higher in CD73-positive NK cells than in CD73-negative NK cells. Mechanistically, NK cells transport CD73 in intracellular vesicles to the cell surface and the extracellular space via actin polymerization-dependent exocytosis upon engagement of 4-1BBL on tumor cells. These CD73-positive NK cells undergo transcriptional reprogramming and upregulate IL-10 production via STAT3 transcriptional activity, suppressing CD4-positive T cell proliferation and IFN-γ production. Taken together, our results support the notion that tumors can hijack NK cells as a means to escape immunity and that CD73 expression defines an inducible population of NK cells with immunoregulatory properties within the tumor microenvironment.


Assuntos
5'-Nucleotidase/imunologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Ligante 4-1BB/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Células K562 , Células Matadoras Naturais/patologia , Linfócitos do Interstício Tumoral/patologia , Neoplasias/patologia
19.
Front Oncol ; 9: 1210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781505

RESUMO

Breast cancer is the most common female malignancy worldwide, however its molecular pathogenesis still needs in-depth investigation. Here we first revealed that the olfactory receptor family 2, subfamily T, member 6 (OR2T6) was significantly over-expressed in breast cancer tissues compared with normal breast tissues. OR2T6 expression was tightly correlated with higher TNM staging, positive lymph node metastasis, and associated with poorer patients' overall and disease-free survival. And OR2T6 enhanced the proliferation, invasion, and migration ability of breast cancer cell lines in vitro (MCF-7 and MDA-MD-231). Mechanically, it promoted the expression of mesenchymal markers (Vimentin, N-cadherin, and ß-catenin) while inhibited E-cadherin expression, suggesting that OR2T6 played a key role in the regulation of epithelial-mesenchymal transition (EMT) process. Moreover, the human gene expression microarray clarified that MAPK/ERK pathway could be initiated by OR2T6 at mRNA level, which was further confirmed at protein level by western blot analysis. Thus, we concluded that OR2T6, as a novel oncogene, contributed to the progression of breast carcinoma by the initiation of EMT and MAPK/ERK pathway.

20.
Mol Immunol ; 114: 323-329, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442916

RESUMO

Ulcerative colitis (UC) is a chronic relapsing inflammatory disease that occurs in the gastrointestinal tract, characterized by an upregulation in autoantibody production and antimicrobial antibody production. The interaction between follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr) is critical to the induction and regulation of antibody production. In this study, we investigated the characteristics of Tfr cells in UC patients. We gated circulating Tfr cells as CD4+CXCR5+CD25+CD127- T cells, of which approximately 73% on average were Foxp3+. The circulating Tfh (CD4+CXCR5+CD25-) cells from control subjects and UC patients presented a comparable capacity to induce IgM production from naive B cells and to mediate class switching to IgG. Tfr cells significantly reduced Tfh-mediated B cell help in both healthy controls and UC patients in a concentration-dependent manner. However, the suppression capacity of Tfr cells was significantly lower in UC patients than in healthy controls. Subsequently, we found that the frequency of CTLA-4-expressing cells was only slightly lower in UC patients, but the MFI of CTLA-4, however, was markedly lower in UC patients. CTLA-4 blockade nearly abrogated Tfr-mediated suppression of IgM, and significantly reduced Tfr-mediated suppression of IgG. Moreover, CTLA-4 blockade removed the relative advantage of Tfr suppression capacity in healthy controls compared to UC patients. Overall, this study demonstrated that CTLA-4 was required for Tfr-mediated suppression of B cell help, but was expressed at lower levels in UC patients.


Assuntos
Antígeno CTLA-4/imunologia , Colite Ulcerativa/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Imunoglobulina M/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Masculino , Pessoa de Meia-Idade , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA