RESUMO
A series of piperine derivatives were designed and successfully synthesized. The antitumor activities of these compounds against 293 T human normal cells, as well as MDA-MB-231 (breast) and Hela (cervical) cancer cell lines, were assessed through the MTT assay. Notably, compound H7 exhibited moderate activity, displaying reduced toxicity towards non-tumor 293 T cells while potently enhancing the antiproliferative effects in Hela and MDA-MB-231 cells. The IC50 values were determined to be 147.45 ± 6.05 µM, 11.86 ± 0.32 µM, and 10.50 ± 3.74 µM for the respective cell lines. In subsequent mechanistic investigations, compound H7 demonstrated a dose-dependent inhibition of clone formation, migration, and adhesion in Hela cells. At a concentration of 15 µM, its inhibitory effect on Hela cell function surpassed that of both piperine and 5-Fu. Furthermore, compound H7 exhibited promising antitumor activity in vivo, as evidenced by significant inhibition of tumor angiogenesis and reduction in tumor weight in a chicken embryo model. These findings provide a valuable scientific foundation for the development of novel and efficacious antitumor agents, particularly highlighting the potential of compound H7 as a therapeutic candidate for cervical cancer and breast cancer.
Assuntos
Alcaloides , Benzodioxóis , Piperidinas , Alcamidas Poli-Insaturadas , Humanos , Piperidinas/farmacologia , Piperidinas/síntese química , Piperidinas/química , Benzodioxóis/farmacologia , Benzodioxóis/síntese química , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/síntese química , Alcamidas Poli-Insaturadas/química , Alcaloides/farmacologia , Alcaloides/síntese química , Alcaloides/química , Animais , Estrutura Molecular , Linhagem Celular Tumoral , Células HeLa , Embrião de Galinha , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Desenho de Fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
BACKGROUND: The micro gas chromatography column (µGCC) is one of the key components of the miniaturized gas chromatography system. However, light alkanes are difficult to be separated by a micro gas chromatography column, especially for methane and ethane, because the length of µGCC is limited by the area of a silicon substrate. More importantly, the heterogeneous microchannel surface formed by silicon glass bonding causes uneven stationary phase coating and the forces between the untreated microchannel surfaces and the stationary phase materials are weak, which will prevent the improvement of separation performance. RESULTS: In this paper, a micro gas chromatography column (µGCC) with uniform HKUST-1 stationary phase is reported. Significantly, an alumina film prepared by the atomic layer deposition (ALD) technique is used to homogenize the heterogeneous microchannels. The alumina is a hydrophilic material and the alumina made by the ALD technique is uniform. The forces between hydrophilic alumina film and HKUST-1 are strong, which can greatly improve the coating uniformity of the hydrophilic stationary phase HKUST-1. The test results show that the µGCC could baseline separate the light alkane mixtures (CH4, C2H6, C3H8, and C4H10) at the high testing temperature of 120 °C. The maximum resolution of the difficult-separated methane and ethane reached 19.2, which is 108 % higher than the µGCC using the same stationary phase without homogenizing the microchannel inner surface. SIGNIFICANCE: The µGCC uses ALD alumina film to homogenize the microchannel inner surface; meanwhile, hydrophilic ALD alumina has a strong electrostatic attraction with the hydrophilic stationary phase HKUST-1. Homogeneous microchannel surface and strong electrostatic attraction are favorable to obtain uniform stationary phase which greatly improves the separation performance, resulting in a large resolution for methane and ethane. The µGCC has broad application prospects in light alkane separation.
RESUMO
Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.
Assuntos
Fatores de Transcrição Forkhead , Neoplasias Ovarianas , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Animais , Feminino , Humanos , Camundongos , beta Catenina/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genéticaRESUMO
Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.
RESUMO
CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.
Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Inflamação , Neoplasias Ovarianas , Transativadores , Ativação Transcricional , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.
Assuntos
Neoplasias do Colo , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias do Colo/genética , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
A semi-packed gas chromatographic column has the advantages of high specific surface area and low column pressure. We report that the stagnation regions formed in the adjacent posts along the channel of the semi-packed columns can decrease the area and height of chromatographic peaks, which makes it difficult to detect low-concentration mixed gases. A semi-packed column with staggered elliptic cylindrical post arrays (SC-S) made using a micro-electro-mechanical system technique is presented, and the separation performance of SC-S is compared with that of a semi-packed column with aligned elliptic cylindrical post arrays (SC-A). The simulation results show that the width of stagnation regions in SC-S is 86.89% smaller than that in SC-A. The experimental results indicate that the area and height of chromatographic peaks increased as stagnation regions reduced. In the separation of the alkane mixture from C8 through C10 with 10 ppm concentration, the chromatographic peak of decane was hardly identified in SC-A while the chromatographic peak in SC-S was still clearly visible. The chromatographic peak heights of octane and nonane were increased by 65.06% and 130.00%, respectively, in SC-S. The peak areas of octane and nonane were increased by 120.45% and 168.18%, respectively.
RESUMO
Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.
Assuntos
Transtorno do Espectro Autista , Aqueduto do Mesencéfalo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Criança , Humanos , Transtorno do Espectro Autista/genética , Fatores de Transcrição/genética , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Epigênese Genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.
Assuntos
Células-Tronco Neurais , Neurogênese , Telencéfalo , Animais , Feminino , Gravidez , Macaca , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Telencéfalo/citologia , Telencéfalo/embriologia , Neurogênese/genética , Peptídeo Semelhante a Galanina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , Neoplasias Encefálicas/genéticaRESUMO
The deubiquitinating enzyme USP14 has been established as a crucial regulator in various diseases, including tumors, neurodegenerative diseases, and metabolic diseases, through its ability to stabilize its substrate proteins. Our group has utilized proteomic techniques to identify new potential substrate proteins for USP14, however, the underlying signaling pathways regulated by USP14 remain largely unknown. Here, we demonstrate the key role of USP14 in both heme metabolism and tumor invasion by stabilizing the protein BACH1. The cellular oxidative stress response factor NRF2 regulates antioxidant protein expression through binding to the antioxidant response element (ARE). BACH1 can compete with NRF2 for ARE binding, leading to the inhibition of the expression of antioxidant genes, including HMOX-1. Activated NRF2 also inhibits the degradation of BACH1, promoting cancer cell invasion and metastasis. Our findings showed a positive correlation between USP14 expression and NRF2 expression in various cancer tissues from the TCGA database and normal tissues from the GTEx database. Furthermore, activated NRF2 was found to increase USP14 expression in ovarian cancer (OV) cells. The overexpression of USP14 was observed to inhibit HMOX1 expression, while USP14 knockdown had the opposite effect, suggesting a role for USP14 in regulating heme metabolism. The depletion of BACH1 or inhibition of heme oxygenase 1 (coded by HMOX-1) was also found to significantly impair USP14-dependent OV cell invasion. In conclusion, our results highlight the importance of the NRF2-USP14-BACH1 axis in regulating OV cell invasion and heme metabolism, providing evidence for its potential as a therapeutic target in related diseases.
Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Humanos , Feminino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antioxidantes , Proteômica , Neoplasias Ovarianas/genética , Heme , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ubiquitina Tiolesterase/genéticaRESUMO
Importance: Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery. A few familial forms of congenital hydrocephalus (CH) have been identified, but the cause of most sporadic cases of CH remains elusive. Recent studies have implicated SMARCC1 , a component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, as a candidate CH gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, CH-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo . Objectives: The aims of this study are to (i) assess the extent to which rare, damaging de novo mutations (DNMs) in SMARCC1 are associated with cerebral ventriculomegaly; (ii) describe the clinical and radiographic phenotypes of SMARCC1 -mutated patients; and (iii) assess the pathogenicity and mechanisms of CH-associated SMARCC1 mutations in vivo . Design setting and participants: A genetic association study was conducted using whole-exome sequencing from a cohort consisting of 2,697 ventriculomegalic trios, including patients with neurosurgically-treated CH, totaling 8,091 exomes collected over 5 years (2016-2021). Data were analyzed in 2023. A comparison control cohort consisted of 1,798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents sourced from the Simons simplex consortium. Main outcomes and measures: Gene variants were identified and filtered using stringent, validated criteria. Enrichment tests assessed gene-level variant burden. In silico biophysical modeling estimated the likelihood and extent of the variant impact on protein structure. The effect of a CH-associated SMARCC1 mutation on the human fetal brain transcriptome was assessed by analyzing RNA-sequencing data. Smarcc1 knockdowns and a patient-specific Smarcc1 variant were tested in Xenopus and studied using optical coherence tomography imaging, in situ hybridization, and immunofluorescence microscopy. Results: SMARCC1 surpassed genome-wide significance thresholds in DNM enrichment tests. Six rare protein-altering DNMs, including four loss-of-function mutations and one recurrent canonical splice site mutation (c.1571+1G>A) were detected in unrelated patients. DNMs localized to the highly conserved DNA-interacting SWIRM, Myb-DNA binding, Glu-rich, and Chromo domains of SMARCC1 . Patients exhibited developmental delay (DD), aqueductal stenosis, and other structural brain and heart defects. G0 and G1 Smarcc1 Xenopus mutants exhibited aqueductal stenosis and cardiac defects and were rescued by human wild-type SMARCC1 but not a patient-specific SMARCC1 mutant. Hydrocephalic SMARCC1 -mutant human fetal brain and Smarcc1 -mutant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2 . Conclusions: SMARCC1 is a bona fide CH risk gene. DNMs in SMARCC1 cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)", characterized by cerebral ventriculomegaly, aqueductal stenosis, DD, and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodeling complex for human brain morphogenesis and provide evidence for a "neural stem cell" paradigm of human CH pathogenesis. These results highlight the utility of trio-based WES for identifying risk genes for congenital structural brain disorders and suggest WES may be a valuable adjunct in the clinical management of CH patients. KEY POINTS: Question: What is the role of SMARCC1 , a core component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, in brain morphogenesis and congenital hydrocephalus (CH)? Findings: SMARCC1 harbored an exome-wide significant burden of rare, protein-damaging de novo mutations (DNMs) (p = 5.83 × 10 -9 ) in the largest ascertained cohort to date of patients with cerebral ventriculomegaly, including treated CH (2,697 parent-proband trios). SMARCC1 contained four loss-of-function DNMs and two identical canonical splice site DNMs in a total of six unrelated patients. Patients exhibited developmental delay, aqueductal stenosis, and other structural brain and cardiac defects. Xenopus Smarcc1 mutants recapitulated core human phenotypes and were rescued by the expression of human wild-type but not patient-mutant SMARCC1 . Hydrocephalic SMARCC1 -mutant human brain and Smarcc1 -mutant Xenopus brain exhibited similar alterationsin the expression of key transcription factors that regulate neural progenitor cell proliferation. Meaning: SMARCC1 is essential for human brain morphogenesis and is a bona fide CH risk gene. SMARCC1 mutations cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)". These data implicate epigenetic dysregulation of fetal neural progenitors in the pathogenesis of hydrocephalus, with diagnostic and prognostic implications for patients and caregivers.
RESUMO
PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Feminino , Animais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Histonas/genética , Camundongos Nus , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismoRESUMO
The chemotherapy effect of docetaxel (DTX) against triple-negative breast cancer (TNBC) remains mediocre and limited when encapsulated in conventional cholesterol liposomes, mainly ascribed to poor penetration and immunosuppressive tumor microenvironment (TME) caused by tumor stroma cells, especially cancer-associated fibroblasts (CAFs). Many studies have attempted to address these problems but trapped into the common dilemma of excessively complicated formulation strategies at the expense of druggability as well as clinical translational feasibility. To better address the discrepancy, ginsenoside Rg3 was utilized to substitute cholesterol to develop a multifunctional DTX-loaded Rg3 liposome (Rg3-Lp/DTX). The obtained Rg3-Lp/DTX was proved to be preferentially uptake by 4T1 cells and accumulate more at tumor site via the interaction between the glycosyl moiety of Rg3 exposed on liposome surface and glucose transporter1 (Glut1) overexpressed on tumor cells. After reaching tumor site, Rg3 was shown to reverse the activated CAFs to the resting stage and attenuate the dense stroma barrier by suppressing secretion of TGF-ß from tumor cells and regulating TGF-ß/Smad signaling. Therefore, reduced levels of CAFs and collagens were found in TME after incorporation of Rg3, inducing enhanced penetration of Rg3-Lp/DTX in the tumor and reversed immune system which can detect and neutralize tumor cells. Compared with wooden cholesterol liposomes, the smart and versatile Rg3-Lp/DTX could significantly improve the anti-tumor effect of DTX, providing a promising approach for TNBC therapy with excellent therapeutic efficacy and simple preparation process.
Assuntos
Neoplasias de Mama Triplo Negativas , Docetaxel , Ginsenosídeos , Glucose , Transportador de Glucose Tipo 1 , Humanos , Lipossomos , Fator de Crescimento Transformador beta , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente TumoralRESUMO
Aquaporins (AQPs) transport water molecules across cell membranes. Although most aquaporins are inhibited by mercury ions, AQP6 was reported to be activated by binding mercury ions to residues C155 and C190. Different from C190 and the other pore-line cysteine residues, C155 is located outside the pore, thus not directly affecting the internal pathway by mercury binding to it. The molecular mechanism of unusual water channel activation by mercury ion binding to the C155 site remains unknown. Here, we investigate the activation of AQP6 by mercury ions binding to C155 by molecular dynamics (MD) simulations. The MD simulation results show that the mercury-induced water permeation activation is derived from the conformational change of a pore-line residue M160, from a point-to-pore conformation before mercury binding to an away-pore conformation after mercury binding. The conformation change of M160 is derived from the reduction of the hydrogen bonding between C155 and S159 in the α-helix with the coordination of C155 to mercury ion altering their conformation significantly. This study reveals the complex mechanism of water channel activation by mercury ion binding to pore-external residues in water channels.
Assuntos
Aquaporinas , Mercúrio , Aquaporinas/metabolismo , Íons/metabolismo , Mercúrio/metabolismo , Simulação de Dinâmica Molecular , Água/químicaRESUMO
Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.
Assuntos
Hidrocefalia , Animais , Fenômenos Biomecânicos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Neurogênese/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do ExomaRESUMO
Limited circulating tumor cells (CTCs) capturing efficiency and lack of regulation capability on CTC-supportive metastatic niches (MNs) are two main obstacles hampering the clinical translation of conventional liposomes for the treatment of metastatic breast cancers. Traditional delivery strategies, such as ligand modification and immune modulator co-encapsulation for nanocarriers, are inefficient and laborious. Here, a multifunctional Rg3 liposome loading with docetaxel (Rg3-Lp/DTX) was developed, in which Rg3 was proved to intersperse in the phospholipid bilayer and exposed its glycosyl on the liposome surface. Therefore, it exhibited much higher CTC-capturing efficiency via interaction with glucose transporter 1 (Glut1) overexpressed on CTCs. After reaching the lungs with CTCs, Rg3 inhibited the formation of MNs by reversing the immunosuppressive microenvironment. Together, Rg3-Lp/DTX exhibited excellent metastasis inhibition capacity by CTC ("seeds") neutralization and MN ("soil") inhibition. The strategy has great clinical translation prospects for antimetastasis treatment with enhanced therapeutic efficacy and simple preparation process.
Assuntos
Ginsenosídeos , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Lipossomos , Microambiente TumoralRESUMO
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
Assuntos
Células-Tronco Neurais/citologia , Regeneração da Medula Espinal/fisiologia , Animais , Axônios/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Transplante de Células-TroncoRESUMO
Green tea has been associated with the prevention and reduction of a wide range of severe health conditions such as cancer, immune, and cardiovascular diseases. The health benefits associated with green tea consumption have been predominantly attributed to green tea polyphenols. The functional properties of green tea polyphenols are mainly anti-oxidative, antimutagenic, anticarcinogenic, anti-microbial, etc. These excellent properties have recently gained considerable attention in the food industry. However, their application is limited by their sensitivity to factors like temperature, light, pH, oxygen, etc. More, studies have reported the occurrence of unpleasant taste and color transfer during food processing. Lastly, the production of functional food requires to maintain the stability, bioactivity, and bioavailability of the active compounds. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of green tea-enriched food products. The present review discusses the novelty in microencapsulation techniques for the safe delivery of green tea polyphenols in food matrices. After a literature on the green tea polyphenols composition, and their health attributes, the encapsulation methods and the coating materials are presented. The application of green tea encapsulates in food matrices as well as their effect on food functional and sensory properties are also discussed.
Assuntos
Composição de Medicamentos/métodos , Compostos Fitoquímicos , Polifenóis , Chá/química , Antioxidantes , Sistemas de Liberação de Medicamentos , Lipossomos , NanopartículasRESUMO
Recently, the development of Src/Abl (c-Src/Bcr-Abl tyrosine kinases) dual inhibitors has attracted considerable attention from the research community for treatment of malignancies. In order to explore the different structural features impacting the Src and Abl inhibitory activities of N(9)-arenethenyl purines and to investigate the molecular mechanisms of ligand-receptor interactions, a molecular modeling study combining the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations was performed. The obtained CoMFA (comparative molecular field analysis) models exhibited satisfactory internal and external predictability. The plots of the CoMFA fields could be used to investigate the structural differences between DFG-in (targeting the active enzyme conformation) and DFG-out (targeting the inactive enzyme conformation) inhibitors. The key amino acid residues were identified by docking studies, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies gave a good correlation with the experimental determined activities. In an energetic analysis, the MM-PBSA (molecular mechanics Poisson-Boltzmann surface) energy decomposition revealed that the van der Waals interactions were the major driving force for the binding of the DFG-in and DFG-out compounds to Src and Abl, especially the hydrophobic interactions between ligands and residues Ala403/380, Asp404/381, and Phe405/382 in DFG-out Src and Abl complexes. They also help to stabilize the DFG-out conformations. These results can offer useful references for designing novel potential DFG-in and DFG-out dual Src/Abl inhibitors.
Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Purinas/química , Relação Quantitativa Estrutura-Atividade , Quinases da Família src/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Fusão bcr-abl/metabolismo , Ligação de Hidrogênio , TermodinâmicaRESUMO
Colocalization of purinergic P2X and P2Y receptors in dorsal root ganglion sensory neurons implies that these receptors play an integrative role in the nociceptive transmission process under inflammatory conditions. In the present study, behavioural and in vivo electrophysiological methods were used to examine the peripheral role of P2 receptors in the persistent nociceptive responses induced by subcutaneous bee venom injection (2 mg/mL) in. Sprague-Dawley rats Local pretreatment with the wide-spectrum P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 1 mmol/L, 50 µL) 10 min prior to s.c. bee venom injection significantly suppressed the duration of spontaneous nociceptive lifting/licking behaviour, inhibited mechanical hyperalgesia and decreased the firing of spinal dorsal horn wide dynamic range neurons in response to bee venom, without affecting primary thermal and mirror-image hyperalgesia. The localized antinociceptive action of PPADS was not due to a systemic effect, because application of the same dose of PPADS to the contralateral side was not effective. The results suggest that activation of peripheral P2 receptors is involved in the induction of nociceptive responses, mechanical hyperalgesia and the excitation of sensory spinal neurons.