Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 91, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468792

RESUMO

BACKGROUND: The CRISPR-Cas12a (formerly Cpf1) system is a versatile gene-editing tool with properties distinct from the broadly used Cas9 system. Features such as recognition of T-rich protospacer-adjacent motif (PAM) and generation of sticky breaks, as well as amenability for multiplex editing in a single crRNA and lower off-target nuclease activity, broaden the targeting scope of available tools and enable more accurate genome editing. However, the widespread use of the nuclease for gene editing, especially in clinical applications, is hindered by insufficient activity and specificity despite previous efforts to improve the system. Currently reported Cas12a variants achieve high activity with a compromise of specificity. Here, we used structure-guided protein engineering to improve both editing efficiency and targeting accuracy of Acidaminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a). RESULTS: We created new AsCas12a variant termed "AsCas12a-Plus" with increased activity (1.5~2.0-fold improvement) and specificity (reducing off-targets from 29 to 23 and specificity index increased from 92% to 94% with 33 sgRNAs), and this property was retained in multiplex editing and transcriptional activation. When used to disrupt the oncogenic BRAFV600E mutant, AsCas12a-Plus showed less off-target activity while maintaining comparable editing efficiency and BRAFV600E cancer cell killing. By introducing the corresponding substitutions into LbCas12a, we also generated LbCas12a-Plus (activity improved ~1.1-fold and off-targets decreased from 20 to 12 while specificity index increased from 78% to 89% with 15 sgRNAs), suggesting this strategy may be generally applicable across Cas12a orthologs. We compared Cas12a-Plus, other variants described in this study, and the reported enCas12a-HF, enCas12a, and Cas12a-ultra, and found that Cas12a-Plus outperformed other variants with a good balance for enhanced activity and improved specificity. CONCLUSIONS: Our discoveries provide alternative AsCas12a and LbCas12a variants with high specificity and activity, which expand the gene-editing toolbox and can be more suitable for clinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Acidaminococcus/genética , Endonucleases/genética , Proteínas Proto-Oncogênicas B-raf/genética
3.
RSC Adv ; 11(54): 34291-34299, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497289

RESUMO

As one kind of reactive carbonyl species (RCS), formaldehyde (FA) with a high concentration could be extremely toxic to living bodies as well as the environment. This paper reports a three-dimensional (3D) Tb3+@Ag-MOFs-based fluorescent probe for fast sensing of FA, which uses a novel turn-on mechanism based on the luminescence induced by Tb3+. The MOF sensor shows broad dynamic ranges of 0.1-1 mM for FA with the detection limit of 1.9 µM. For online and real-time detection of FA, a portable smartphone platform was employed to analyze the RGB values of the fluorescence by a smartphone application. By incorporating this probe into a polyacrylonitrile (PAN) layer, we synthesized a film composite that could effectively remove FA in real samples including milk and chemical factory wastewater, and the removal rate reached 98.52% and 95.38% respectively. Moreover, the potential of the film to remove gaseous FA was confirmed by experiments as well.

4.
Nucleic Acids Res ; 48(18): 10590-10601, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986839

RESUMO

The CRISPR/Cas system is widely used for genome editing. However, robust and targeted insertion of a DNA segment remains a challenge. Here, we present a fusion nuclease (Cas9-N57) to enhance site-specific DNA integration via a fused DNA binding domain of Sleeping Beauty transposase to tether the DNA segment to the Cas9/sgRNA complex. The insertion was unidirectional and specific, and DNA fragments up to 12 kb in length were successfully integrated. As a test of the system, Cas9-N57 mediated the insertion of a CD19-specific chimeric antigen receptor (CD19-CAR) cassette into the AAVS1 locus in human T cells, and induced intrahepatic cholangiocarcinoma in mice by simultaneously mediating the insertion of oncogenic KrasG12D into the Rosa26 locus and disrupting Trp53 and Pten. Moreover, the nuclease-N57 fusion proteins based on AsCpf1 (AsCas12a) and CjCas9 exhibited similar activity. These findings demonstrate that CRISPR-associated nuclease-N57 protein fusion is a powerful tool for targeted DNA insertion and holds great potential for gene therapy applications.


Assuntos
Proteína 9 Associada à CRISPR/genética , Colangiocarcinoma/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética , Proteína Supressora de Tumor p53/genética , Animais , Sistemas CRISPR-Cas/genética , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA/genética , Edição de Genes , Técnicas de Introdução de Genes , Terapia Genética , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Domínios Proteicos/genética , RNA Guia de Cinetoplastídeos , RNA não Traduzido/genética , Linfócitos T/metabolismo , Linfócitos T/patologia
5.
Nanoscale ; 11(35): 16336-16341, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455962

RESUMO

The simultaneous possession of high tumor-targeting efficiency, long blood circulation, and low normal-tissue retention is critical for future clinically translatable nanomedicines. Herein, we reported a facile in situ glycoconjugation strategy for the synthesis of near-infrared (NIR)-emitting gold glyconanoparticles (AuGNPs, ∼2.4 nm) using 1-thio-ß-d-glucose as both the surface ligand and the reducing agent in the presence of a gold precursor. The ultrasmall AuGNPs showed similar low healthy organ retention to that of the renal-clearable ultrasmall nonglyconanoparticles, but ∼10 and 2.5 times higher in vitro and in vivo tumor-targeting efficiencies, respectively, were observed. This facile glycoconjugation strategy of ultrasmall AuGNPs was found to show activity towards glucose transporters in the cancer cells and prolonged blood circulation with both renal and hepatobiliary clearance pathways, which synergistically enhanced the tumor targeting of the ultrasmall AuGNPs. This discovery provides a smart strategy for the improvement in tumor targeting by ultrasmall NPs and further strengthens our understanding of glycoconjugation in designing future clinically translatable nanomedicines.


Assuntos
Sistemas de Liberação de Medicamentos , Corantes Fluorescentes , Glicoconjugados , Ouro , Nanopartículas Metálicas , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Glicoconjugados/química , Glicoconjugados/farmacocinética , Glicoconjugados/farmacologia , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA