Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(1): 1107-1121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914708

RESUMO

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/microbiologia , Nucléolo Celular/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Infecções por Pseudomonas , Interferência de RNA , Infecções Estafilocócicas , Estaurosporina/farmacologia , Ubiquitina Tiolesterase/metabolismo
2.
Nucleus ; 7(2): 112-20, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27003693

RESUMO

Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans. In this article, we provide several lines of bioinformatic evidence showing that human and Drosophila homologues of C. elegans NCL-1, TRIM-71 and Brat, respectively, likely act as translational suppressors of fibrillarin. Moreover, since their 3'-UTRs contain putative target sites, they may also be under the control of the let-7 miRNA. We hypothesize that let-7, TRIM and fibrillarin contribute activities in concert, and constitute a conserved network controlling nucleolar size in eukaryotes. We provide an in-depth literature review of various molecular pathways, including the let-7/ncl-1/fib-1 genetic cascade, implicated in the regulation of nucleolar size.


Assuntos
Nucléolo Celular , Evolução Molecular , Tamanho das Organelas/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA