Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37247698

RESUMO

Endometriosis is an estrogen-dependent, progesterone-resistant gynecological disease with an unknown pathogenesis. Compared to women without endometriosis, women with endometriosis have a remarkably high heme level in the peritoneal fluid. To further investigate the pathomechanisms of heme in endometriosis, we aimed to identify the dysregulated expression of heme-trafficking proteins, such as PGRMC1/2 that are also receptors that mediate the non-genomic responses to progesterone, and heme-degrading enzymes between ectopic endometrial stromal cells and their normal counterparts. We found that heme could regulate progesterone receptor-related gene expression. Functional human endometrial stromal cell experiments showed that heme promotes cell proliferation and migration in a heme oxygenase-1-independent manner; moreover, blocking oxidative phosphorylation/ATP generation could abolish these effects of heme in vitro, whereas intraperitoneal hemopexin administration could alleviate heme-triggered ectopic lesions in vivo. Therefore, heme likely mediates the induction of progesterone resistance and simultaneously induces endometriosis via the mitochondrial oxidative phosphorylation pathway.


Assuntos
Endometriose , Doenças Uterinas , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Endometriose/genética , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Endométrio/patologia , Estrogênios/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
2.
Cell Mol Life Sci ; 79(3): 173, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244789

RESUMO

During embryo implantation, apoptosis is inevitable. These apoptotic cells (ACs) are removed by efferocytosis, in which macrophages are filled with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to the relationship between efferocytosis-related metabolism and the immune behavior of decidual macrophages (dMΦs) and its effect on pregnancy outcome. Here, we report positive feedback of IL-33/ST2-AXL-efferocytosis leading to pregnancy failure through metabolic reprogramming of dMΦs. We compared the serum levels of IL-33 and sST2, along with IL-33 and ST2, efferocytosis and metabolism of dMΦs, from patients with normal pregnancies and unexplained recurrent pregnancy loss (RPL). We revealed disruption of the IL-33/ST2 axis, increased apoptotic cells and elevated efferocytosis of dMΦs from patients with RPL. The dMΦs that engulfed many apoptotic cells secreted more sST2 and less TGF-ß, which polarized dMΦs toward the M1 phenotype. Moreover, the elevated sST2 biased the efferocytosis-related metabolism of RPL dMΦs toward oxidative phosphorylation and exacerbated the disruption of the IL-33/ST2 signaling pathway. Metabolic disorders also lead to dysfunction of efferocytosis, resulting in more uncleared apoptotic cells and secondary necrosis. We also screened the efferocytotic molecule AXL regulated by IL-33/ST2. This positive feedback axis of IL-33/ST2-AXL-efferocytosis led to pregnancy failure. IL-33 knockout mice demonstrated poor pregnancy outcomes, and exogenous supplementation with mouse IL-33 reduced the embryo losses. These findings highlight a new etiological mechanism whereby dMΦs leverage immunometabolism for homeostasis of the microenvironment at the maternal-fetal interface.


Assuntos
Apoptose , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Aborto Espontâneo/imunologia , Aborto Espontâneo/patologia , Animais , Decídua/citologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/sangue , Interleucina-33/deficiência , Interleucina-33/genética , Macrófagos/citologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oligomicinas/farmacologia , Fosforilação Oxidativa , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Tirosina Quinase Axl
3.
Cancer Lett ; 265(2): 226-38, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18353539

RESUMO

Epstein-Barr virus (EBV) is involved in the carcinogenesis of several types of cancers such as nasopharyngeal carcinoma (NPC) and Burkitt's lymphoma. The latent membrane protein (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. Therefore, genetic manipulation of LMP1 expression may provide a novel strategy for the treatment of the EBV-associated human cancers. Deoxyribozymes (DNAzymes) are catalytic nucleic acids that bind and cleave a target RNA in a highly sequence-specific manner. We have designed several LMP1-specific DNAzymes and tested their effect on cell proliferation and apoptosis in LMP1-positive cells. Here, we show that active DNAzymes down-regulated the expression of the EBV oncoprotein LMP1 and inhibited cellular signal transduction pathways abnormally activated by LMP1. This down-regulation of the LMP1 expression was shown to be associated with a decrease in the level of antiapoptotic Bcl-2 and an increase in Caspase-3 and -9 activities in the nasopharyngeal carcinoma cell line CNE1-LMP1, which constitutively expresses the LMP1. When combined with radiation treatment, the DNAzymes significantly induced apoptosis in CNE1-LMP1 cells, leading to an increased radiosensitivity both in cells and in a xenograft NPC model in mice. The results suggest that LMP1 may represent a molecular target for DNAzymes and provide a basis for the use of the LMP1 DNAzymes as potential radiosensitizers for treatment of the EBV-associated carcinomas.


Assuntos
Carcinoma de Células Escamosas/virologia , DNA Catalítico/farmacologia , Neoplasias Nasofaríngeas/virologia , Tolerância a Radiação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Estudos de Viabilidade , Humanos , Camundongos , Camundongos Nus , Neoplasias Nasofaríngeas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas da Matriz Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA