RESUMO
Background: Surgical site infection (SSI) is a common and serious complication following gastric cancer surgery, often linked to patient age, surgery duration, and the surgical approach taken. Accurate prediction and personalized mitigation of SSI risk are crucial for improving surgical outcomes. While prior studies have focused on SSI rates after open and laparoscopic gastric cancer surgeries, it is important to also consider robot-assisted procedures. This study aims to develop a predictive model for SSI after radical gastric cancer surgery, validate it through external testing, and provide a reliable tool for clinical use. Methods: Data from 763 postoperative gastric cancer patients were analyzed, with 601 in the training set from Gansu Provincial People's Hospital and 162 in the validation set from The First Hospital of Lanzhou University. All available variables were considered as potential predictors, and factors influencing SSI post-surgery were identified using logistic regression. A nomogram model was then created for precise SSI risk prediction. Results: Among the 763 gastric cancer patients, 10.9% experienced postoperative SSI. Significant differences were noted in the American Society of Anesthesiologists (ASA) physical status classification system classification, preoperative albumin levels, surgical approach, and reconstruction techniques between groups. Age, surgery duration, surgical approach, total gastrectomy, and tumor diameter were identified as significant predictors of SSI. The nomogram model showed high predictive accuracy, with concordance index (C-index) values of 0.834 in the training set and 0.798 in the validation set. Calibration plots and decision curve analysis (DCA) further validated the model's performance. Conclusions: This study identified five key predictors of postoperative SSI in gastric cancer and developed a nomogram model to enhance SSI prediction. These findings have important implications for preventing SSI in gastric cancer surgeries.
RESUMO
BACKGROUND: Understanding the impact of clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) on solid tumor risk and mortality can shed light on novel cancer pathways. METHODS: The authors analyzed whole genome sequencing data from the Trans-Omics for Precision Medicine Women's Health Initiative study (n = 10,866). They investigated the presence of CHIP and mCA and their association with the development and mortality of breast, lung, and colorectal cancers. RESULTS: CHIP was associated with higher risk of breast (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.03-1.64; p = .02) but not colorectal (p = .77) or lung cancer (p = .32). CHIP carriers who developed colorectal cancer also had a greater risk for advanced-stage (p = .01), but this was not seen in breast or lung cancer. CHIP was associated with increased colorectal cancer mortality both with (HR, 3.99; 95% CI, 2.41-6.62; p < .001) and without adjustment (HR, 2.50; 95% CI, 1.32-4.72; p = .004) for advanced-stage and a borderline higher breast cancer mortality (HR, 1.53; 95% CI, 0.98-2.41; p = .06). Conversely, mCA (cell fraction [CF] >3%) did not correlate with cancer risk. With higher CFs (mCA >5%), autosomal mCA was associated with increased breast cancer risk (HR, 1.39; 95% CI, 1.06-1.83; p = .01). There was no association of mCA (>3%) with breast, colorectal, or lung mortality except higher colon cancer mortality (HR, 2.19; 95% CI, 1.11-4.3; p = .02) with mCA >5%. CONCLUSIONS: CHIP and mCA (CF >5%) were associated with higher breast cancer risk and colorectal cancer mortality individually. These data could inform on novel pathways that impact cancer risk and lead to better risk stratification.
Assuntos
Neoplasias da Mama , Aberrações Cromossômicas , Hematopoiese Clonal , Neoplasias Colorretais , Mosaicismo , Humanos , Feminino , Hematopoiese Clonal/genética , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Incidência , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/epidemiologia , Sequenciamento Completo do GenomaRESUMO
Although potential risk factors for sternal wound infection (SWI) have been extensively studied, the onset time of SWI and different risk factors for superficial and deep SWI were rarely reported. This nested case-control study aims to compare the onset time and contributors between superficial and deep SWI. Consecutive adult patients who underwent cardiac surgery through median sternotomy in a single center from January 2011 to January 2021 constituted the cohort. The case group was those who developed SWI as defined by CDC and controls were matched 6:1 per case. Kaplan-Meier analysis, LASSO and univariate and multivariate Cox regressions were performed. A simple nomogram was established for clinical prediction of the risk of SWI. The incidence of SWI was 1.1% (61 out of 5471) in our cohort. Totally 366 controls were matched to 61 cases. 26.2% (16 of 61) SWI cases were deep SWI. The median onset time of SWI was 35 days. DSWI had a longer latency than SSWI (median time 46 days vs. 32 days, p = 0.032). Kaplan-Meier analyses showed different time-to-SWI between patients with and without DM (p = 0.0011) or MI (p = 0.0019). Multivariate Cox regression showed that BMI (HR = 1.083, 95% CI: 1.012-1.116, p = 0.022), DM (HR = 2.041, 95% CI: 1.094-3.805, p = 0.025) and MI (HR = 2.332, 95% CI: 1.193-4.557, p = 0.013) were independent risk factors for SWI. Superficial SWI was only associated with BMI (HR = 1.089, 95% CI: 1.01-1.175, p = 0.027), while deep SWI was associated with DM (HR = 3.271, 95% CI: 1.036-10.325, p = 0.043) and surgery time (HR = 1.004, 95% CI: 1.001-1.008, p = 0.027). The nomogram for SWI prediction had an AUC of 0.67, good fitness and clinical effectiveness as shown by the calibration curve and decision curve analyses. BMI, DM and MI were independent risk factors for SWI. DSWI had a longer latency and different risk factors compared to SSWI. The nomogram showed a fair performance and good effectiveness for the clinical prediction of SWI.
Assuntos
Esternotomia , Infecção da Ferida Cirúrgica , Humanos , Masculino , Estudos de Casos e Controles , Esternotomia/efeitos adversos , Feminino , Fatores de Risco , Pessoa de Meia-Idade , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Idoso , Fatores de Tempo , Incidência , Esterno/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversosRESUMO
Angiogenesis significantly correlates with tumor microenvironment remodeling and immunotherapy response. Our study aimed to construct a prognostic angiogenesis-related model for gastric cancer. Using public database, a angiogenetic related five-gene (FGF1, GRB14, PAK3, PDGFRA, and PRKD1) model was identified. The top 25 % of patients were defined as high-risk, and the remaining as low-risk. The area under the curve for 1-, 3-, and 5-year overall survival (OS) were 0.646, 0.711, and 0.793, respectively. Survival analysis showed a better 10-year OS in low-risk patients in the construction (HR = 0.57, p = 0.002) and validation cohorts. GO and GSEA revealed that DEGs were enriched in extracellular matrix receptor interactions, dendritic cell antigen processing/presentation regulation, and angiogenesis pathways. CIBERSORT analysis revealed abundant naïve B cells, resting mast cells, resting CD4+ memory T cells, M2 macrophages, and monocytes in high-risk subgroups. The TIMER database showed strong positive correlations between PAK3, FGF1, PRKD1, and PDGFRA expression levels and the infiltration of CD4+ T cells and macrophages. The IOBR analysis revealed an immunosuppressive environment in the high-risk subgroup. Low-risk patients show a higher response rate to anti-PD1 treatment. TMA showed that FGF1 overexpression was associated with poor prognosis and CD4+ T cells and macrophage infiltration. In vivo study based on the 615 mice indicated that inhibiting FGF1 function could suppress tumor growth and enhance anti-PD1 therapeutic efficacy. In summary, we established a five-angiogenesis-related gene model to predict survival outcomes and immunotherapy responses in patients with gastric cancer and identified FGF1 as a prognostic gene and potential target for improving immune treatment.
Assuntos
Imunoterapia , Neovascularização Patológica , Neoplasias Gástricas , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neovascularização Patológica/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Aims: In the year 2021, human brucellosis ranked fifth in terms of the number of cases among all statutorily notifiable infectious diseases in China, thus remaining a significant concern for public health. This study aims to provide insights into the financial burden of human brucellosis by examining hospital stays and associated costs for affected individuals. Methods: In this retrospective study, we gathered updated data from 467 inpatient cases primarily diagnosed with human brucellosis at eight major tertiary hospitals in Beijing, China, spanning from 2013 to 2023. To comprehensively explore the economic impact on individuals, we not only analyzed the duration of hospital stays and total costs but also examined various charge types, including drug, lab test, medical imaging, medical treatment, surgical procedures, medical supplies and consumables, inpatient bed care, nursing services, and other services costs. Statistical analysis was employed to compare differences among gender, age, ethnicity, type of health insurance, condition at admission, comorbidity index, the performance of surgery, and the site of infection. Results: Both the length of stay and total cost exhibited significant variations among insurance, surgery, and infection site groups. Utilization categories demonstrated significant differences between patients who underwent surgery and those who did not, as well as across different infection sites. Furthermore, multiple linear regression analysis revealed that the condition at admission, Elixhauser comorbidity index, infection site, and surgery influenced both hospital stay and total cost. In addition, age and insurance type were associated with total costs. Conclusion: By delving into various utilization categories, we have addressed a significant gap in the literature. Our findings provide valuable insights for optimizing the allocation and management of health resources based on the influencing factors identified in this study.
Assuntos
Brucelose , Tempo de Internação , Humanos , Feminino , Masculino , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Estudos Retrospectivos , Brucelose/economia , Brucelose/diagnóstico , Brucelose/epidemiologia , Pessoa de Meia-Idade , Adulto , Pequim , Idoso , Pacientes Internados/estatística & dados numéricos , Adolescente , Adulto Jovem , Custos de Cuidados de Saúde/estatística & dados numéricos , China/epidemiologiaRESUMO
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Hepatócitos , Hepatopatias , Hepatócitos/metabolismo , Hepatócitos/transplante , Sistemas CRISPR-Cas/genética , Humanos , Animais , Hepatopatias/terapia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Terapia Genética/métodos , Tirosinemias/terapia , Tirosinemias/genética , Proliferação de Células , HidrolasesRESUMO
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.
RESUMO
BACKGROUND: Soft tissue sarcoma, a malignant tumor arising from mesenchymal tissues with poor prognosis. 5'-Nucleotidase Domain Containing 2 (NT5DC2) is a novel oncogene, and the precise involvement of NT5DC2 in soft tissue sarcoma were still undefined. Hence, our study aims to investigate NT5DC2 functions in soft tissue sarcoma progression. METHODS: The tumor immune single-cell hub 2 (TISCH2) website, The Cancer Genome Atlas (TCGA) pan-cancer or sarcoma and Gene Expression Omnibus (GEO, GSE21122) databases were applied to visualize the NT5DC2 status in the sarcoma databases. The NT5DC2 protein expression in sarcoma tissues in our hospital was detected by using immunohistochemistry (IHC) and analyzed the associations between NT5DC2 expression and clinicopathological parameters. Real-time quantitative polymerase chain reaction (RT-qPCR), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) assay, wound healing, transwell, flow cytometry and xenograft model were used to elucidate the effects of NT5DC2 downregulated by lentivirus in sarcoma cell. RESULTS: The TISCH2 website detection found that NT5DC2 expression is enriched in malignant cells in sarcoma single-cell database. Furthermore, the TCGA-sarcoma database indicated that NT5DC2 expression correlates with metastasis, positive margin status, prognosis, and diagnostic value. Additionally, IHC staining showed that 40 % of soft tissue sarcoma patients present high expression of NT5DC2, and NT5DC2 upregulation is closely associated with poor prognosis. Functional verification analysis further revealed that downregulating NT5DC2 expression can suppress sarcoma progression through the ECM-receptor interaction pathway. CONCLUSION: Low expression of NT5DC2 predicts a favorable prognosis in soft tissue sarcoma, and downregulated NT5DC2 expression can suppress sarcoma cell progression through the ECM-receptor interaction pathway.
RESUMO
BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.
Assuntos
Clostridium butyricum , Síndrome Nefrótica , Humanos , Criança , Camundongos , Animais , RNA Ribossômico 16S , Inflamação , Rim , Ácidos Graxos Voláteis , Butiratos , Interleucina-6 , AcetatosRESUMO
Selenylation modification has been widely developed to improve the biological effects of natural polysaccharides. In this study, a purified new polysaccharide (MSP-4) was isolated from Morchella Sextelata, and selenized into SeMSP-4 using the HNO3-Na2SeO3 method. The selenium (Se) content of SeMSP-4 was 101.81 ± 9.90 mg/kg, and the molecular weight of SeMSP-4 was 1.23 × 105 Da. The FT-IR, XRD and AFM results showed that MSP-4 was successfully combined with the Se element. The structure characters of SeMSP-4 were analyzed by methylation analysis combined with 1D and 2D NMR spectroscopy. And, the radical scavenging test revealed that SeMSP-4 exhibited higher antioxidant capacities in vitro than MSP-4. The cytotoxicity analysis indicated that SeMSP-4 could dose-dependently inhibit the proliferation of HepG2 and HeLa cells, but did not show a cytotoxic effect on normal cells (HEK293). Furthermore, SeMSP-4 stimulation significantly increased the macrophage viability and enhanced NO production in macrophage cells. This study suggested that SeMSP-4 could be utilized as a potential selenium source with antioxidant, antitumor, and immunostimulatory activities.
Assuntos
Antioxidantes , Ascomicetos , Selênio , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Selênio/farmacologia , Selênio/química , Células HeLa , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/químicaRESUMO
BACKGROUND: The neutrophil-to-lymphocyte ratio (NLR), a composite inflammatory biomarker, is associated with the prognosis in patients with colorectal tumors. However, whether the NLR can be used as a predictor of symptomatic postoperative anastomotic leakage (AL) in elderly patients with colon cancer is unclear. AIM: To assess the role of the NLR in predicting the occurrence of symptomatic AL after surgery in elderly patients with colon cancer. METHODS: Data from elderly colon cancer patients who underwent elective radical colectomy with anastomosis at three centers between 2018 and 2022 were retrospectively analyzed. Receiver operating characteristic curve analysis was performed to determine the best predictive cutoff value for the NLR. Twenty-two covariates were matched using a 1:1 propensity score matching method, and univariate and multivariate logistic regression analyses were used to determine risk factors for the development of postoperative AL. RESULTS: Of the 577 patients included, 36 (6.2%) had symptomatic AL. The optimal cutoff value of the NLR for predicting AL was 2.66. After propensity score matching, the incidence of AL was significantly greater in the ≥ 2.66 NLR subgroup than in the < 2.66 NLR subgroup (11.5% vs 2.5%; P = 0.012). Univariate logistic regression analysis revealed statistically significant correlations between blood transfusion intraoperatively and within 2 d postoperatively, preoperative albumin concentration, preoperative prognostic nutritional index, and preoperative NLR and AL occurrence (P < 0.05); multivariate logistic regression analysis revealed that an NLR ≥ 2.66 [odds ratio (OR) = 5.51; 95% confidence interval (CI): 1.50-20.26; P = 0.010] and blood transfusion intraoperatively and within 2 d postoperatively (OR = 2.52; 95%CI: 0.88-7.25; P = 0.049) were risk factors for the occurrence of symptomatic AL. CONCLUSION: A preoperative NLR ≥ 2.66 and blood transfusion intraoperatively and within 2 d postoperatively are associated with a higher incidence of postoperative symptomatic AL in elderly patients with colon cancer. The preoperative NLR has predictive value for postoperative symptomatic AL after elective surgery in elderly patients with colon cancer.
RESUMO
This study aimed to investigate the disparities between metagenomic next-generation sequencing (mNGS) and conventional culture results in patients with bronchiectasis. Additionally, we sought to investigate the correlation between the clinical characteristics of patients and their microbiome profiles. The overarching goal was to enhance the effective management and treatment of bronchiectasis patients, providing a theoretical foundation for healthcare professionals. A retrospective survey was conducted on 67 bronchiectasis patients admitted to The First Hospital of Jiaxing from October 2019 to March 2023. Clinical baseline information, inflammatory indicators, and pathogen detection reports, including mNGS, conventional blood culture, bronchoalveolar lavage fluid (BALF) culture, and sputum culture results, were collected. By comparing the results of mNGS and conventional culture, the differences in pathogen detection rate and pathogen types were explored, and the diagnostic performance of mNGS compared to conventional culture was evaluated. Based on the various pathogens detected by mNGS, the association between clinical characteristics of bronchiectasis patients and mNGS microbiota results was analyzed. The number and types of pathogens detected by mNGS were significantly larger than those detected by conventional culture. The diagnostic efficacy of mNGS was significantly superior to conventional culture for all types of pathogens, particularly in viral detection (p < 0.01). Regarding pathogen detection rate, the bacteria with the highest detection rate were Pseudomonas aeruginosa (17/58) and Haemophilus influenzae (11/58); the fungus with the highest detection rate was Aspergillus fumigatus (10/21), and the virus with the highest detection rate was human herpes virus 4 (4/11). Differences were observed between the positive and negative groups for P. aeruginosa in terms of common scoring systems for bronchiectasis and whether the main symptom of bronchiectasis manifested as thick sputum (p < 0.05). Significant distinctions were also noted between the positive and negative groups for A. fumigatus regarding Reiff score, neutrophil percentage, bronchiectasis etiology, and alterations in treatment plans following mNGS results reporting (p < 0.05). Notably, 70% of patients with positive A. fumigatus infection opted to change their treatment plans. The correlation study between clinical characteristics of bronchiectasis patients and mNGS microbiological results revealed that bacteria, such as P. aeruginosa, and fungi, such as A. fumigatus, were associated with specific clinical features of patients. This underscored the significance of mNGS in guiding personalized treatment approaches. mNGS could identify multiple pathogens in different types of bronchiectasis samples and was a rapid and effective diagnostic tool for pathogen identification. Its use was recommended for diagnosing the causes of infections in bronchiectasis patients.
Assuntos
Aspergilose , Bronquiectasia , Microbiota , Humanos , Estudos Retrospectivos , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bronquiectasia/diagnósticoRESUMO
BACKGROUND: Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS: We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS: The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS: AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Esqualeno Mono-Oxigenase , Humanos , Inteligência Artificial , Biomarcadores , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Fosfatidilinositol 3-Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismoRESUMO
Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.
Assuntos
Ferroptose , Interleucina-6 , Pulmão , Poli I-C , Receptores Citoplasmáticos e Nucleares , Ferroptose/efeitos dos fármacos , Animais , Poli I-C/farmacologia , Interleucina-6/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacosAssuntos
Região Sacrococcígea , Teratoma , Humanos , Região Sacrococcígea/cirurgia , Teratoma/cirurgiaRESUMO
BACKGROUND: Platelet concentrate (PC) transfusions are crucial in prevention and treatment of bleeding in infection, surgery, leukemia, and thrombocytopenia patients. Although the technology for platelet preparation and storage has evolved over the decades, there are still challenges in the demand for platelets in blood banks because the platelet shelf life is limited to 5 days due to bacterial contamination and platelet storage lesions (PSLs) at 20-24°C under constant horizontal agitation. In addition, the relations between some adverse effects of platelet transfusions and PSLs have also been considered. Therefore, understanding the mechanisms of PSLs is conducive to obtaining high quality platelets and facilitating safe and effective platelet transfusions. OBJECTIVE: This review summarizes developments in mechanistic research of PSLs and their relationship with clinical practice, providing insights for future research. METHODS: Authors conducted a search on PubMed and Web of Science using the professional terms "PSL" and "platelet transfusion." The obtained literature was then roughly categorized based on their research content. Similar studies were grouped into the same sections, and further searches were conducted based on the keywords of each section. RESULTS: Different studies have explored PSLs from various perspectives, including changes in platelet morphology, surface molecules, biological response modifiers (BMRs), metabolism, and proteins and RNA, in an attempt to monitor PSLs and identify intervention targets that could alleviate PSLs. Moreover, novel platelet storage conditions, including platelet additive solutions (PAS) and reconsidered cold storage methods, are explored. There are two approaches to obtaining high-quality platelets. One approach simulates the in vivo environment to maintain platelet activity, while the other keeps platelets at a low activity level in vitro under low temperatures. CONCLUSION: Understanding PSLs helps us identify good intervention targets and assess the therapeutic effects of different PSLs stages for different patients.
Assuntos
Plaquetas , Trombocitopenia , Humanos , Plaquetas/metabolismo , Transfusão de Plaquetas/métodos , Hemorragia , Bancos de Sangue , Preservação de Sangue/métodosRESUMO
Background: Prostheses for the reconstruction of periacetabular bone tumors are prone to instigate stress shielding. The purpose of this study is to design 3D-printed prostheses with topology optimization (TO) for the reconstruction of periacetabular bone tumors and to add porous structures to reduce stress shielding and facilitate integration between prostheses and host bone. Methods: Utilizing patient CT data, we constructed a finite element analysis (FEA) model. Subsequent phases encompassed carrying out TO on the designated area, utilizing the solid isotropic material penalization model (SIMP), and this optimized removal area was replaced with a porous structure. Further analyses included preoperative FEA simulations to comparatively evaluate parameters, including maximum stress, stress distribution, strain energy density (SED), and the relative micromotion of prostheses before and after TO. Furthermore, FEA based on patients' postoperative CT data was conducted again to assess the potential risk of stress shielding subsequent to implantation. Ultimately, preliminary follow-up findings from two patients were documented. Results: In both prostheses, the SED before and after TO increased by 143.61% (from 0.10322 to 0.25145 mJ/mm3) and 35.050% (from 0.30964 to 0.41817 mJ/mm3) respectively, showing significant differences (p < 0.001). The peak stress in the Type II prosthesis decreased by 10.494% (from 77.227 to 69.123 MPa), while there was no significant change in peak stress for the Type I prosthesis. There were no significant changes in stress distribution or the proportion of regions with micromotion less than 28 µm before and after TO for either prosthesis. Postoperative FEA verified results showed that the stress in the pelvis and prostheses remained at relatively low levels. The results of follow-up showed that the patients had successful osseointegration and their MSTS scores at the 12th month after surgery were both 100%. Conclusion: These two types of 3D-printed porous prostheses using TO for periacetabular bone tumor reconstruction offer advantages over traditional prostheses by reducing stress shielding and promoting osseointegration, while maintaining the original stiffness of the prosthesis. Furthermore, in vivo experiments show that these prostheses meet the requirements for daily activities of patients. This study provides a valuable reference for the design of future periacetabular bone tumor reconstruction prostheses.
RESUMO
Osteosarcoma is a prevalent malignant bone tumor with a poor prognosis. Mothers against decapentaplegic homolog 3 (Smad3) present as a therapeutic target in antitumor treatment, whereas its functions in the osteosarcoma have not been well explored. In the current study, we aimed to investigate the effects of Smad3 in the progression of osteosarcoma. The tumor immune single-cell hub 2 website was used for graph-based visualization of Smad3 status in osteosarcoma single-cell database. Western Blot was applied to detect the expression of Smad3 protein in cell lines. Colony formation and cell counting kit-8 assays were used to evaluate cell proliferation. Transwell and wound healing assays were used to detect the migration and invasion abilities of cells. Cell apoptosis rates and cell cycle changes were explored by using flow cytometry analysis. The xenograft tumor growth model was applied to explore the effect in tumor growth after Smad3 blockage in vivo. Moreover, to confirm the potential mechanism of Smad3's effects on osteosarcoma, bioinformatics analysis was performed in TARGET-Osteosarcoma and GSE19276 databases. Our study found that the Smad3 protein is overexpressed in 143B and U2OS cells, suppressing the expression of Smad3 protein in osteosarcoma cells by Smad3 target inhibitor (E)-SIS3 or lentivirus can inhibit the proliferation, migration, invasion, promote cell apoptosis, arrest cell G1 cycle in osteosarcoma cells in vitro, and suppress tumor growth in vivo. Furthermore, the bioinformatics analysis demonstrated that high expression of Smad3 is closely associated with low immune status in TARGET-Osteosarcoma and GSE19276 databases. Our study suggested that Smad3 could contribute positively to osteosarcoma progression via the regulation of tumor immune microenvironment, and Smad3 may represent as an valuable potential therapeutic target in osteosarcoma therapy.