Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Am Chem Soc ; 146(6): 4221-4233, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305127

RESUMO

Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.

2.
Angew Chem Int Ed Engl ; 63(6): e202315031, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117015

RESUMO

Enzyme-powered nanomotors have demonstrated promising potential in biomedical applications, especially for catalytic tumor therapy, owing to their ability of self-propulsion and bio-catalysis. However, the fragility of natural enzymes limits their environmental adaptability and also therapeutic efficacy in catalysis-enabled tumor therapy. Herein, polyoxometalate-nanozyme-based light-driven nanomotors were designed and synthesized for targeted synergistic photothermal-catalytic tumor therapy. In this construct, the peroxidase-like activity of the P2 W18 Fe4 polyoxometalates-based nanomotors can provide self-propulsion and facilitate their production of reactive oxygen species thus killing tumor cells, even in the weakly acidic tumor microenvironment. Conjugated polydopamine endows the nanomotors with the capability of light-driven self-propulsion behavior. After 10 min of NIR (808 nm) irradiation, along with the help of epidermal growth factor receptor antibody, the targeted accumulation and penetration of nanomotors in the tumor enabled highly efficient synergistic photothermal-catalytic therapy. This approach overcomes the disadvantages of the intrinsically fragile nature of enzyme-powered nanomotors in physiological environments and, more importantly, provides a motility-behavior promoted synergistic anti-tumor strategy.


Assuntos
Ânions , Neoplasias , Polieletrólitos , Humanos , Neoplasias/terapia , Anticorpos , Catálise , Terapia Fototérmica , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Sci Rep ; 13(1): 19438, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945738

RESUMO

To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 µmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Endorribonucleases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Músculo Liso Vascular/metabolismo , Células Espumosas/metabolismo , Hiper-Homocisteinemia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Aterosclerose/metabolismo , Regiões Promotoras Genéticas , Metionina/metabolismo , Apolipoproteínas E/metabolismo , Lipídeos/farmacologia , Homocisteína/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Estresse do Retículo Endoplasmático
4.
Cancer Nurs ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011074

RESUMO

BACKGROUND: Yoga can be considered supportive therapy for patients with cancer to alleviate cancer-related symptoms. However, there has been no meta-analysis examining yoga's effects among patients with cancer undergoing chemotherapy and/or radiotherapy. OBJECTIVE: To synthesize the evidence regarding the effects of yoga on improving cancer-related fatigue, psychological distress, and quality of life among patients with cancer undergoing chemotherapy and/or radiotherapy. METHODS: Ten English databases and 2 Chinese databases were searched from inception to December 2022. Two independent reviewers screened studies and extracted the data. Randomized controlled trials examining the effects of yoga on cancer-related fatigue, psychological distress, and quality of life were included. Meta-analysis was conducted, and narrative synthesis was performed when meta-analysis was not applicable. RESULTS: Fourteen studies from 16 articles were included. The results showed that yoga reduced cancer-related fatigue (standardized mean difference [SMD], -0.75; 95% confidence interval [CI], -1.12 to -0.38; P < .001), anxiety (SMD, -0.91; 95% CI, -1.68 to -0.14; P = .02), but not depression (SMD, -0.82; 95% CI, -1.67 to 0.04; P = .06). The effects of yoga on distress and quality of life were inconclusive. CONCLUSIONS: Yoga significantly helped reduce cancer-related fatigue and anxiety but did not reduce depression among patients with cancer undergoing chemotherapy and/or radiotherapy. Further rigorous studies are needed to identify the optimal characteristics of yoga for these patients. IMPLICATIONS FOR PRACTICE: It is possible to recommend yoga to patients with cancer undergoing chemotherapy and/or radiotherapy for managing cancer-related fatigue and anxiety after duly considering patients' physical conditions and ensuring appropriate instructions are given.

5.
FASEB J ; 37(12): e23304, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971426

RESUMO

The phosphatase and tensin congeners (Pten) gene affects cell growth, cell proliferation, and rearrangement of connections, and it is closely related to cellular senescence, but it remains unclear the role of muscle-Pten gene in exercise against age-related deterioration in skeletal muscle and mortality induced by a high-salt diet (HSD). In here, overexpression and knockdown of muscle Pten gene were constructed by building MhcGAL4 /PtenUAS-overexpression and MhcGAL4 /PtenUAS-RNAi system in flies, and flies were given exercise training and a HSD for 2 weeks. The results showed that muscle Pten knockdown significantly reduced the climbing speed, climbing endurance, GPX activity, and the expression of Pten, Sirt1, PGC-1α genes, and it significantly increased the expression of Akt and ROS level, and impaired myofibril and mitochondria of aged skeletal muscle. Pten knockdown prevented exercise from countering the HSD-induced age-related deterioration of skeletal muscle. Pten overexpression has the opposite effect on skeletal muscle aging when compared to it knockdown, and it promoted exercise against HSD-induced age-related deterioration of skeletal muscle. Pten overexpression significantly increased lifespan, but its knockdown significantly decreased lifespan of flies. Thus, current results confirmed that differential expression of muscle Pten gene played an important role in regulating skeletal muscle aging and lifespan, and it also affected the adaptability of aging skeletal muscle to physical exercise since it determined the activity of muscle Pten/Akt pathway and Pten/Sirt1/PGC-1α pathway.


Assuntos
Condicionamento Físico Animal , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Drosophila/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Dieta , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
6.
BMC Pregnancy Childbirth ; 23(1): 813, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996795

RESUMO

The objective of this study was to investigate the optimal controlled ovarian hyperstimulation (COH) protocol for patients aged 35 and above with poor ovarian response (POR), utilizing real-world data. This retrospective cohort study examined clinical information from a total of 4256 patients between January 2017 and November 2022. The patients were categorized into three groups: modified GnRH agonist protocol (2116 patients), GnRH antagonist protocol (1628 patients), and Mild stimulation protocol (512 patients). Comparative analysis was conducted on clinical variables and pregnancy outcomes across the three groups. The GnRH agonist protocol was associated with a higher number of oocyte number (4.02 ± 2.25 vs. 3.15 ± 1.52 vs. 2.40 ± 1.26, p < 0.001), higher number of transferable embryos (1.73 ± 1.02 vs. 1.35 ± 1.22 vs. 1.10 ± 0.86, p = 0.016), higher cumulative live birth rate 28.50(603/2116) vs. 24.94(406/1628) vs. 20.51(105/512), p < 0.001) than GnRH antagonist protocol and Mild stimulation protocol, the Mild stimulation protocol was associated with a higher miscarriage rates 16.27(62/381) vs. 16.61(48/289) vs. 32.22(29/90), p = 0.001) than the other two groups. Therefore, it can be concluded that all three protocols can be used in patients over 35 years old with poor ovarian response. However, if patients require more frozen-thawed embryo transfers to achieve better cumulative live birth rates, the modified GnRH agonist protocol may be the preferable option.


Assuntos
Síndrome de Hiperestimulação Ovariana , Indução da Ovulação , Gravidez , Humanos , Feminino , Adulto , Indução da Ovulação/métodos , Taxa de Gravidez , Estudos Retrospectivos , Hormônio Liberador de Gonadotropina , Síndrome de Hiperestimulação Ovariana/epidemiologia , Síndrome de Hiperestimulação Ovariana/etiologia , Antagonistas de Hormônios/uso terapêutico , Fertilização in vitro/métodos
7.
Nat Commun ; 14(1): 6276, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805612

RESUMO

Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.

8.
J Mater Chem B ; 11(37): 8897-8915, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37667977

RESUMO

In the microscopic world, synthetic micro/nanomotors (MNMs) can convert a variety of energy sources into driving forces to help humans perform a number of complex tasks with greater ease and efficiency. These tiny machines have attracted tremendous attention in the field of drug delivery, minimally invasive surgery, in vivo sampling, and environmental management. By modifying their surface materials and functionalizing them with bioactive agents, these MNMs can also be transformed into dynamic micro/nano-biosensors that can detect biomolecules in real-time with high sensitivity. The extensive range of operations and uses combined with their minuscule size have opened up new avenues for tackling intricate analytical difficulties. Here, in this review, various driving methods are briefly introduced, followed by a focus on intelligent detection techniques based on MNMs. And we discuss the distinctive advantages, current issues, and challenges associated with MNM-based intelligent detection. It is believed that the future advancements of MNMs will greatly impact the diagnosis, treatment, and prevention of diseases.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos
9.
Molecules ; 28(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175098

RESUMO

With the increased incidence of wine fraud, a fast and reliable method for wine certification has become a necessary prerequisite for the vigorous development of the global wine industry. In this study, a classification strategy based on three-dimensional fluorescence spectroscopy combined with chemometrics was proposed for oak-barrel and stainless steel tanks with oak chips aged wines. Principal component analysis (PCA), partial least squares analysis (PLS-DA), and Fisher discriminant analysis (FDA) were used to distinguish and evaluate the data matrix of the three-dimensional fluorescence spectra of wines. The results showed that FDA was superior to PCA and PLS-DA in classifying oak-barrel and stainless steel tanks with oak chips aged wines. As a general conclusion, three-dimensional fluorescence spectroscopy can provide valuable fingerprint information for the identification of oak-barrel and stainless steel tanks with oak chips aged wines, while the study will provide some theoretical references and standards for the quality control and quality assessment of oak-barrel aged wines.


Assuntos
Quercus , Vinho , Vinho/análise , Aço Inoxidável , Quercus/química , Espectrometria de Fluorescência , Quimiometria , Madeira/química
10.
J Asian Nat Prod Res ; 25(6): 519-527, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229521

RESUMO

Three new abietane and two new tigliane diterpenoids were isolated from the roots Euphorbia fischeriana. Their structures were elucidated by spectroscopic methods and quantum chemical calculation. Compounds 4 and 5 exhibited the inhibitory activities against human cancer cells HeLa and HepG2, with IC50 ranging from 3.54 to 11.45 µM.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Diterpenos , Euphorbia , Forbóis , Humanos , Abietanos/farmacologia , Abietanos/química , Forbóis/análise , Euphorbia/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Diterpenos/farmacologia , Diterpenos/química , Raízes de Plantas/química , Estrutura Molecular
11.
World J Clin Cases ; 11(11): 2482-2488, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37123316

RESUMO

BACKGROUND: Reports on perioperative anesthesia management in pediatric patients with difficult airways are scarce. In addition to relatively more difficulties in the technique of endotracheal intubation, the time for manipulation is restricted compared to adults. Securing the airways safely and avoiding the occurrence of hypoxemia in these patients are of significance. CASE SUMMARY: A 9-year-old boy with spastic cerebral palsy, severe malnutrition, thoracic scoliosis, thoracic and airway malformation, laryngomalacia, pneumonia, and epilepsy faced the risk of anesthesia during palliative surgery. After a thorough preoperative evaluation, a detailed scheme for anesthesia and a series of intubation tools were prepared by a team of anesthesiologists. Awake fiberoptic intubation is the widely accepted strategy for patients with anticipated difficult airways. Given the age and medical condition of the patient, we kept him sedated with spontaneous breathing during endotracheal intubation. The endotracheal intubation was completed on the second attempt after the failure of the first effort. Fortunately, the surgery was successful without postoperative complications. CONCLUSION: Dealing with difficult airways in the pediatric population, proper sedation allows time to intubate without interrupting spontaneous breathing. The appropriate endotracheal intubation method based on the patient's unique characteristics is the key factor in successful management of these rare cases.

12.
ACS Nanosci Au ; 3(1): 94-102, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101464

RESUMO

The applications of nanomotors in the biomedical field have been attracting extensive attention. However, it remains a challenge to fabricate nanomotors in a facile way and effectively load drugs for active targeted therapy. In this work, we combine the microwave heating method and chemical vapor deposition (CVD) to fabricate magnetic helical nanomotors efficiently. The microwave heating method can accelerate intermolecular movement, which converts kinetic energy into heat energy and shortens the preparation time of the catalyst used for carbon nanocoil (CNC) synthesis by 15 times. Fe3O4 nanoparticles are in situ nucleated on the CNC surface by the microwave heating method to fabricate magnetically driven CNC/Fe3O4 nanomotors. In addition, we achieved precise control of the magnetically driven CNC/Fe3O4 nanomotors through remote manipulation of magnetic fields. Anticancer drug doxorubicin (DOX) is then efficiently loaded onto the nanomotors via π-π stacking interactions. Finally, the drug-loaded CNC/Fe3O4@DOX nanomotor can accurately accomplish cell targeting under external magnetic field control. Under short-time irradiation of near-infrared light, DOX can be quickly released onto target cells to effectively kill the cells. More importantly, CNC/Fe3O4@DOX nanomotors allow for single-cell or cell-cluster-targeted anticancer drug delivery, providing a dexterous platform to potentially perform many medically relevant tasks in vivo. The efficient preparation method and application in drug delivery are beneficial for future industrial production and provide inspiration for advanced micro/nanorobotic systems using the CNC as a carrier for a wide range of biomedical applications.

13.
Acta Pharm Sin B ; 13(2): 517-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873176

RESUMO

Attributed to the miniaturized body size and active mobility, micro- and nanomotors (MNMs) have demonstrated tremendous potential for medical applications. However, from bench to bedside, massive efforts are needed to address critical issues, such as cost-effective fabrication, on-demand integration of multiple functions, biocompatibility, biodegradability, controlled propulsion and in vivo navigation. Herein, we summarize the advances of biomedical MNMs reported in the past two decades, with particular emphasis on the design, fabrication, propulsion, navigation, and the abilities of biological barriers penetration, biosensing, diagnosis, minimally invasive surgery and targeted cargo delivery. Future perspectives and challenges are discussed as well. This review can lay the foundation for the future direction of medical MNMs, pushing one step forward on the road to achieving practical theranostics using MNMs.

14.
ACS Nano ; 17(5): 5095-5107, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36861648

RESUMO

In nature, there exist a variety of transport proteins on cell membranes capable of actively moving cargos across biological membranes, which plays a vital role in the living activities of cells. Emulating such biological pumps in artificial systems may bring in-depth insights on the principles and functions of cell behaviors. However, it poses great challenges due to difficulty in the sophisticated construction of active channels at the cellular scale. Here, we report the development of bionic micropumps for active transmembrane transportation of molecular cargos across living cells that is realized by enzyme-powered microrobotic jets. By immobilizing urease onto the surface of a silica-based microtube, the prepared microjet is capable of catalyzing the decomposition of urea in surrounding environments and generating microfluidic flow through the inside channel for self-propulsion, which is verified by both numerical simulation and experimental results. Therefore, once naturally endocytosed by the cell, the microjet enables the diffusion and, more importantly, active transportation of molecular substances between the extracellular and intracellular ends with the assistance of generated microflow, thus serving as an artificial biomimetic micropump. Furthermore, by constructing enzymatic micropumps on cancer cell membranes, enhanced delivery of anticancer doxorubicin into cells as well as improved killing efficacy are achieved, which demonstrates the effectiveness of the active transmembrane drug transport strategy in cancer treatment. This work not only extends the applications of micro/nanomachines in biomedical fields but also provides a promising platform for future cell biology research at cellular and subcellular scales.


Assuntos
Microfluídica , Preparações Farmacêuticas , Transporte Biológico , Microfluídica/métodos , Membrana Celular/metabolismo , Difusão
15.
Plant Dis ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36774584

RESUMO

Potato (Solanum tuberosum) plants showing blackleg and soft rot symptoms were collected at a commercial vegetable farm near Newmanstown, PA in August 2021 (Fig. S1). The incidence of potato blackleg in the unirrigated field was about 5 to 8%, but approximately 30% in the irrigated field. The diseased stems were cut into 5 cm and surface disinfected. The stem segments were placed into a 50-mL tube containing 15 mL of sterile water for 15 min for bacterial release. The bacterial suspension was streaked on crystal violet polypectate (CVP) (Hélias et al. 2012) plates and incubated at 28°C for 48 h. Three single colonies produced pits on CVP were picked and purified. Genomic DNA of all three isolates were extracted using the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA). Polymerase chain reaction (PCR) was performed using all three extracted DNAs as a template with the primer pairs gapA 7F/938R (Cigna et al. 2017), recA F/R (Waleron et al. 2001), dnaA F/R (Schneider et al. 2011) and dnaX F/R (Slawiak et al. 2009) targeting the gapA, recA, dnaA and dnaX genes, respectively. Isolate 21PA01 was further studied as a representative isolate. PCR amplicons derived from both forward and reverse primers were sequenced and analyzed using the BLAST algorithm against the NCBI database (https://www.ncbi.nlm.nih.gov). The regions of gapA (GenBank accession No. ON989738), recA (ON989739), dnaA (OP121183), and dnaX (OP121184) had 99.86%, 100%, 98.88%, and 100% identities with Pectobacterium brasiliense strains S1.16.01.3M (MN167062.1), BL-2 (MW721598.1), IPO:4132 (CP059956.1), and BL-2 (MW721603.1), respectively. A phylogenetic maximum-likelihood tree of the concatenated genes with the length of 2551 bp was constructed to visualize the relationship among different species of Dickeya and Pectobacterium. As a result, 21PA01 was in a single monophyletic cluster with other Pectobacterium brasiliense reference strains (Fig. S2 C). To confirm the pathogen, Koch's postulates were performed. Seed pieces of potato 'Lamoka' were planted in potting mix in one-gallon plastic pots in a greenhouse. Three weeks after emergence, the stems of three plants were each injected with 10 µL of bacteria suspension of either 21PA01 at 107 CFU/mL, P. parmentieri ME175 in tryptic soy broth (TSB) at 107 CFU/mL or TSB at 2 cm above the soil line. Seven days after inoculation, stems inoculated with 21PA01 and ME175 showed black and rotten symptoms, whereas the TSB-injected control plants remained symptomless. In addition, 'Lamoka' tubers were inoculated by placing 10 µL 21PA01 and ME175 suspensions at 107 CFU/mL, and TSB in a 1-cm-deep hole poked in a tuber separately and then sealed with petroleum gel, followed by incubation in a moist chamber at 22 °C for 4 d. The 21PA01 and ME175 inoculated tubers showed soft rot symptoms, but the TSB treatment had no symptoms. Bacterial colonies were isolated from the infected stems and confirmed by the DNA sequences as described above. PCR result was negative on control plant samples. Both stem and tuber inoculation trials were repeated two times, and the results were consistent. Thus, 21PA01 was identified as Pectobacterium brasiliense. To our knowledge, this is the first report of P. brasiliense infecting potatoes in Pennsylvania, USA, although it has been reported somewhere else (van der Merwe et al. 2010, Zhao et al. 2018). This could be a new species in Northeastern US.

16.
Front Oncol ; 12: 1061065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483036

RESUMO

Gastrointestinal (GI) cancers are the second most common cause of cancer related deaths in the World. Neuroendocrine neoplasms (NENs) is a rare tumor that originated from peptidergic neurons and neuroendocrine cells. NENs occurs in all parts of the body, especially in stomach, intestine, pancreas and lung. These rare tumors are challenging to diagnose at earlier stages because of their wide anatomical distribution and complex clinical features. Traditional imaging methods including magnetic resonance imaging (MRI) and computed tomography (CT) are mostly of useful for detection of larger primary tumors that are 1cm in size. A new medical imaging specialty called nuclear medicine uses radioactive substances for both diagnostic and therapeutic purposes. Nuclear medicine imaging relies on the tissue-specific uptake of radiolabeled tracers. Nuclear medicine techniques can easily identify the NENs tissues for their ability to absorb and concentrate amine, precursors, and peptides, whereas the traditional imaging methods are difficult to perform well. The somatostatin receptor (SSTR) is a targetable receptor frequently expressed in the gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs), and is a promising target for tumor-targeted therapies and radiography. SSTR based somatostatin receptor imaging and peptide receptor radionuclide therapy (PRRT) has emerged as a new hot subject in the diagnosis and treatment of GEP-NENs due to the rapid development of somatostatin analogues (SSAs) and radionuclide. This review aims to provide an overview of the current status of nuclear medicine imaging modalities in the imaging of GEP-NENs, and puts them in perspective of clinical practice.

17.
Front Oncol ; 12: 1036648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387198

RESUMO

The tumorigenesis of esophageal carcinoma arises from transcriptional dysregulation would become exceptionally dependent on specific regulators of gene expression, which could be preferentially attributed to the larger non-coding cis-regulatory elements, i.e. super-enhancers (SEs). SEs, large genomic regulatory entity in close genomic proximity, are underpinned by control cancer cell identity. As a consequence, the transcriptional addictions driven by SEs could offer an Achilles' heel for molecular treatments on patients of esophageal carcinoma and other types of cancer as well. In this review, we summarize the recent findings about the oncogenic SEs upon which esophageal cancer cells depend, and discuss why SEs could be seen as the hallmark of cancer, how transcriptional dependencies driven by SEs, and what opportunities could be supplied based on this cancer-specific SEs.

18.
Cell Mol Biol Lett ; 27(1): 92, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224534

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common and malignant cancers with no effective therapeutic approaches. Echinacoside (ECH), a phenylethanoid glycoside isolated from Chinese herbal medicine, Cistanche salsa, can inhibit HCC progression; however, poor absorption and low bioavailability limit its biological applications. METHODS: To improve ECH sensitivity to HepG2 cells, we developed a mesoporous silica nanoparticle (MSN)-based drug delivery system to deliver ECH to HepG2 cells via galactose (GAL) and poly(ethylene glycol) diglycidyl ether (PEGDE) conjugation (ECH@Au@MSN-PEGDE-GAL, or ECH@AMPG). Gain- and loss-of-function assays were conducted to assess the effects of UBR5 on HCC cell apoptosis and glycolysis. Moreover, the interactions among intermediate products were also investigated to elucidate the mechanisms by which UBR5 functions. RESULTS: The present study showed that ubiquitin protein ligase E3 component N-recognin 5 (UBR5) acted as an oncogene in HCC tissues and that its expression was inhibited by ECH. AMPG showed a high drug loading property and a slow and sustained release pattern over time. Moreover, owing to the valid drug accumulation, ECH@AMPG promoted apoptosis and inhibited glycolysis of HepG2 cells in vitro. In vivo experiments demonstrated that AMPG also enhanced the antitumor effects of ECH in HepG2 cell-bearing mice. CONCLUSIONS: Our results indicated the clinical significance of UBR5 as a therapeutic target. On the basis of the nontoxic and high drug-loading capabilities of AMPG, ECH@AMPG presented better effects on HCC cells compared with free ECH, indicating its potential for the chemotherapy of HCC.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Preparações de Ação Retardada , Galactose , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Dióxido de Silício
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1318-1323, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208229

RESUMO

OBJECTIVE: To investigate the effect and molecular mechanism of lncRNA X-inactive specific transcript (XIST) on the proliferation and apoptosis of acute myeloid leukemia cells KG1a. METHODS: Forty-one patients with acute myeloid leukemia from January 2017 to May 2019 treated in Beijing Aerospace Center Hospital were collected, as well as 20 patients who conformed to the international standard of iron deficiency anemia as control group. KG1a cells were divided into pcDNA group, pcDNA-XIST group, pcDNA-XIST+miR-NC group, and pcDNA-XIST+miR-196b group. Real-time fluorescence quantitative PCR was used to detect the expressions of XIST and miR-196b, CCK-8 was used to detect cell activity, flow cytometry was used to detect cell cycle and apoptosis, Western blot method was used to detect the protein expressions of cleaved-caspase3, pro-caspase3, Bax, and Bcl-2, and dual luciferase report experiment was used to detect the targeting relationship between XIST and miR-196b. RESULTS: The expression level of lncRNA XIST in bone marrow cells in the AML group was significantly lower than that in the iron deficiency anemia group (P<0.001). Compared with pcDNA group, the expression level of lncRNA XIST, proportion of cells in G0/G1 phase, apoptosis rate, and the expression levels of cleaved-caspase3 and Bax in the pcDNA-XIST group of KG1a cells were significantly increased (all P<0.001), while the expression level of miR-196b, cell viability, the proportion of S-phase cells, and the expression levels of pro-caspase3 and Bcl-2 were significantly decreased (all P<0.001). Compared with pcDNA-XIST group, the cell activity, proportion of S-phase cells, and the expression levels of pro-caspase3 and Bcl-2 in the pcDNA-XIST+miR-196b group were significantly increased (all P<0.001), while the proportion of cells in the G0/G1 phase, apoptosis rate, and the expression levels of cleaved-caspase3 and Bax decreased (all P<0.001). CONCLUSION: Overexpression of lncRNA XIST can inhibit the proliferation of acute myeloid leukemia cells KG1a and promote apoptosis by down-regulating the expression of miR-196b.


Assuntos
Anemia , Leucemia Mieloide Aguda , MicroRNAs , RNA Longo não Codificante/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Sincalida , Proteína X Associada a bcl-2
20.
World J Clin Cases ; 10(27): 9828-9833, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186185

RESUMO

BACKGROUND: Esophageal carcinosarcoma (ECS) is a rare biphasic tumor and a type of esophageal malignancy, which presents as protruding or elevated lesions. ECS patients are often not hospitalized until they have severe dysphagia. ECS is easily misdiagnosed as a benign tumor due to its atypical characteristics under endoscopy. With the popularization of endoscopic treatment, these patients are often referred to endoscopic treatment, such as endoscopic submucosal dissection (ESD). However, there is a lack of consensus on the endoscopic features and therapies for ECS. Here, we report a case of ECS and discuss the value of endoscopic diagnosis and therapeutic strategies. CASE SUMMARY: A 63-year-old man was admitted to the hospital with dysphagia. During the endoscopic examination, an elevated lesion was found with an erosive and hyperemic surface covered with white pseudomembranous inflammation. Endoscopic ultrasonography (EUS), biopsies, and enhanced thoracic computed tomography were performed, suggesting that it was a benign lesion and located within the submucosal layer. This lesion was diagnosed as a fibrovascular polyp with a Paris classification of 0-Ip. The patient was then referred to ESD treatment. However, the post-ESD pathological and immunohistochemical study showed that this lesion was ECS with a vertical positive margin (T1b stage), indicating that we made a misdiagnosis and achieved a noncurative resection. Due to the potential tumor residue, additional open surgery was performed at the patient's request. In the postoperative pathological study, no tumor remnants or metastases were discovered. The patient was followed for 1 year and had no recurrence. CONCLUSION: ECS can be misdiagnosed at the initial endoscopy. EUS can help to identify the tumor stage. Patients with T1b stage ECS cannot be routinely referred to ESD treatment due to the high risk of metastasis and recurrence rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA