Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Med ; 30(1): 72, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822247

RESUMO

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Assuntos
Bleomicina , DNA Glicosilases , Modelos Animais de Doenças , Macrófagos , Mitofagia , Proteínas Quinases , Fibrose Pulmonar , Animais , Mitofagia/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Camundongos , Macrófagos/metabolismo , Proteínas Quinases/metabolismo , Bleomicina/efeitos adversos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ativação de Macrófagos , Humanos , Quinazolinonas
2.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805565

RESUMO

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Colesterol , Progressão da Doença , Fator 3-gama Nuclear de Hepatócito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
3.
Sci China Life Sci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38613742

RESUMO

Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.

4.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460132

RESUMO

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Assuntos
Sobrecarga de Ferro , Doenças Metabólicas , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos C57BL
5.
Metabolism ; 152: 155784, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211696

RESUMO

BACKGROUND AND AIM: Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice. METHODS: We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis. RESULTS: Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis. CONCLUSION: We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.


Assuntos
Tecido Adiposo , Proteína 8 Semelhante a Angiopoietina , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Triglicerídeos , Animais , Feminino , Camundongos , Tecido Adiposo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Dedos de Zinco
6.
J Diabetes ; 16(1): e13467, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646182

RESUMO

AIM: Iron homeostasis is critical for functional respiratory chain complex of mitochondrial, thus potentially contributing to fat biology and energy homeostasis. Transferrin receptor (Tfrc) binds to transferrin for extracellular iron uptake and is recently reported to be involved in brown fat development and functionality. However, whether TFRC levels and variants are associated with human obesity is unknown. METHODS: To investigate the association of TFRC levels and variants with human obesity, fat biopsies were obtained from surgery. Exon-sequencing and genetic assessments were conducted of a case-control study. For TFRC levels assessment in fat biopsy, 9 overweight and 12 lean subjects were involved. For genetic study, obese (n = 1271) and lean subjects (n = 1455) were involved. TFRC levels were compared in abdominal mesenteric fat of pheochromocytoma patients versus control subjects, and overweight versus lean subjects. For genetic study, whole-exome sequencing of obese and matched control subjects were conducted and analyzed. In addition, the possible disruption in protein stability of TFRC variant was assessed by structural and molecular analysis. RESULTS: TFRC levels are increased in human browning adipose tissue and decreased in fat of overweight patients. Besides, TFRC levels are negatively correlated with body mass index and positively correlated with uncoupling protein 1 levels. Furthermore, a rare heterozygous missense variant p.I337V in TFRC shows a tendency to enrich in obese subjects. Structural and functional study reveals impaired protein stability of the TFRC variant compared to wild-type. CONCLUSIONS: Reduced TFRC levels and its rare variant p.I337V with protein instability are associated with human obesity.


Assuntos
Obesidade , Sobrepeso , Humanos , Tecido Adiposo Marrom/metabolismo , Estudos de Casos e Controles , Ferro , Obesidade/metabolismo , Receptores da Transferrina/genética
7.
Cell Mol Immunol ; 20(8): 908-923, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308559

RESUMO

As one of the main tumor-infiltrating immune cell types, tumor-associated macrophages (TAMs) determine the efficacy of immunotherapy. However, limited knowledge about their phenotypically and functionally heterogeneous nature restricts their application in tumor immunotherapy. In this study, we identified a subpopulation of CD146+ TAMs that exerted antitumor activity in both human samples and animal models. CD146 expression in TAMs was negatively controlled by STAT3 signaling. Reducing this population of TAMs promoted tumor development by facilitating myeloid-derived suppressor cell recruitment via activation of JNK signaling. Interestingly, CD146 was involved in the NLRP3 inflammasome-mediated activation of macrophages in the tumor microenvironment, partially by inhibiting transmembrane protein 176B (TMEM176B), an immunoregulatory cation channel. Treatment with a TMEM176B inhibitor enhanced the antitumor activity of CD146+ TAMs. These data reveal a crucial antitumor role of CD146+ TAMs and highlight the promising immunotherapeutic approach of inhibiting CD146 and TMEM176B.


Assuntos
Inflamassomos , Neoplasias , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antígeno CD146/metabolismo , Macrófagos , Microambiente Tumoral
8.
Nutr Metab (Lond) ; 20(1): 29, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349836

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a major contributor to liver cirrhosis and hepatocellular carcinoma. There remains no effective pharmacological therapy. The hepatic lipid metabolism and fatty acid ß-oxidation are regulated by Perilipin5 (Plin5). However, it is yet unknown how Plin5 affects NASH and the molecular process. METHODS: High-fat, high-cholesterol and high-fructose (HFHC) diets were used to mimic the progression of NASH in wild type (WT) mice and Plin5 knockout (Plin5 KO) mice. The degree of ferroptosis was measured by detecting the expression of key genes of ferroptosis and the level of lipid peroxide. The degree of NASH was judged by observing the morphology of the liver, detecting the expression of inflammation and fibrosis related genes of liver damage. Plin5 was overexpressed in the liver of mice by tail vein injection of adenovirus, and the process of NASH was simulated by methionine choline deficiency (MCD) diet. The occurrence of ferroptosis and NASH was detected by the same detection method. Targeted lipidomics sequencing was used to detect the difference in free fatty acid expression in the WT Plin5 KO group. Finally, it was verified in cell experiments to further study the effect of free fatty acids on ferroptosis of hepatocytes. RESULTS: In various NASH models, hepatic Plin5 was dramatically reduced. Plin5 knockout (KO) worsened NASH-associated characteristics in mice given a high-fat/high-cholesterol (HFHC) diet, such as lipid accumulation, inflammation and hepatic fibrosis. It has been shown that ferroptosis is involved in NASH progression. We revealed that Plin5 KO in mice aggravated the degree of ferroptosis in NASH models. Conversely, overexpression of Plin5 significantly alleviated ferroptosis and further ameliorated progression of MCD-induced NASH. Analysis of livers obtained from HFHC diet-fed mice by targeted lipidomics revealed that 11-Dodecenoic acid was significantly decreased in Plin5 KO mice. Addition of 11-Dodecenoia acid to Plin5 knockdown hepatocytes effectively prevented ferroptosis. CONCLUSION: Our study demonstrates that Plin5 protects against NASH progression by increasing 11-Dodecenoic acid level and further inhibiting ferroptosis, suggesting that Plin5 has therapeutic potential as a target for the management of NASH.

9.
Nutrients ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049395

RESUMO

Macrophages have critical contributions to both acute and chronic inflammatory diseases, for example, bowel disease and obesity, respectively. However, little is known about the post-transcriptional regulatory mechanisms in macrophage-mediated inflammatory diseases. hnRNPA2B1 (A2B1) is an RNA binding protein for mRNA fate determination. We showed that hnRNPA2B1 mRNA levels were increased in colon in dextran sodium sulfate (DSS)-induced colitis mice and in epididymal white adipose tissue (eWAT) and spleen of high-fat-diet (HFD)-induced obese mice. Consistently, mice with haploinsufficiency of A2B1 (A2B1 HET) are protected against DSS-induced acute colitis and HFD-induced obesity, with decreased M1 macrophages polarization in colon, eWAT and spleen. Mechanistically, A2B1 mRNA and protein levels were increased in LPS-stimulated RAW 264.7 macrophages, and A2B1 enhanced RNA stability of pro-inflammatory genes Tnfα, Il-6 and Il-1ß for the regulation of macrophages polarization. Interestingly, A2B1 HET mice exhibited reduced white fat expansion, which was influenced by macrophages, since conditioned medium from macrophages with A2B1 manipulation significantly changed preadipocyte proliferation. Our data demonstrate that A2B1 plays a vital role in macrophage-mediated inflammation via regulating mRNA stability, suggesting that A2B1 may be served as a promising target for the intervention of acute and chronic inflammatory diseases.


Assuntos
Colite , Inflamação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Macrófagos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Camundongos Obesos , Sulfato de Dextrana/efeitos adversos
10.
Diabetes ; 72(4): 467-482, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607240

RESUMO

The de novo differentiation of hyperplastic adipocytes from adipocyte progenitor cells (APCs) is accompanied by a reduction in adipose tissue fibrosis and inflammation and improvement in insulin sensitivity in obesity and aging. However, the regulators of APC proliferation are poorly understood. Here, we show that fibroblast growth factor 6 (FGF6) acts in an autocrine and/or paracrine manner to control platelet-derived growth factor receptor α-positive APC proliferation via extracellular signal-regulated kinase (ERK) signaling. Specific FGF6 overexpression in inguinal white adipose tissue (iWAT) improved the signs of high-fat diet- or aging-induced adipose hypertrophy and insulin resistance. Conversely, chronic FGF6 expression blockade in iWAT, mediated by a neutralizing antibody or Fgf6 expression deficiency, impaired adipose tissue expansion and glucose tolerance. Overall, our data suggest that FGF6 acts as a proliferative factor for APCs to maintain fat homeostasis and insulin sensitivity.


Assuntos
Resistência à Insulina , Neoplasias , Animais , Camundongos , Fator 6 de Crescimento de Fibroblastos/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Neoplasias/metabolismo , Proliferação de Células , Homeostase , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
11.
Clin Transl Oncol ; 25(6): 1856-1868, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36692641

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high tumoral heterogeneity, while the detailed regulatory network is not well known. METHODS: Via single-cell RNA-sequencing (scRNA-seq) data analysis, we comprehensively investigated the transcriptional profile of different subtypes of TNBC epithelial cells with gene regulatory network (GRN) and alternative splicing (AS) event analysis, as well as the crosstalk between epithelial and non-epithelial cells. RESULTS: Of note, we found that luminal progenitor subtype exhibited the most complex GRN and splicing events. Besides, hnRNPs negatively regulates AS events in luminal progenitor subtype. In addition, we explored the cellular crosstalk among endothelial cells, stromal cells and immune cells in TNBC and discovered that NOTCH4 was a key receptor and prognostic marker in endothelial cells, which provide potential biomarker and target for TNBC intervention. CONCLUSIONS: In summary, our study elaborates on the cellular heterogeneity of TNBC, revealing that NOTCH4 in endothelial cells was critical for TNBC intervention. This in-depth understanding of epithelial cell and non-epithelial cell network would provide theoretical basis for the development of new drugs targeting this sophisticated network in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Células Endoteliais , Processamento Alternativo , Biologia Computacional , Análise de Sequência de RNA
12.
J Cachexia Sarcopenia Muscle ; 14(1): 391-405, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510115

RESUMO

BACKGROUND: Age-associated sarcopenia is characterized of progressed loss of skeletal muscle power, mass, and function, which affects human physical activity and life quality. Besides, accompanied with sarcopenia, aged population also faces a series of metabolic dysfunctions. Irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), is a myokine induced by exercise and has been shown to exert multiple beneficial effects on health. The goal of the study is to investigate the alterations of Fndc5/irisin in skeletal muscles during ageing and whether irisin administration could ameliorate age-associated sarcopenia and metabolic dysfunction. METHODS: The mRNA and protein levels of FNDC5/irisin in skeletal muscle and serum from 2- and 24-month-old mice or human subjects were analysed using qRT-PCR and western blot. FNDC5/irisin knockout mice were generated to investigate the consequences of FNDC5/irisin deletion on skeletal muscle mass, as well as morphological and molecular changes in muscle during ageing via histological and molecular analysis. To identify the therapeutic effects of chronic irisin treatment in mice during ageing, in vivo intraperitoneal administration of 2 mg/kg recombinant irisin was performed three times per week in ageing mice (14-month-old) for 4 months or in aged mice (22-month-old) for 1 month to systematically investigate irisin's effects on age-associated sarcopenia and metabolic performances, including grip strength, body weights, body composition, insulin sensitivity, energy expenditure, serum parameters and phenotypical and molecular changes in fat and liver. RESULTS: We showed that the expression levels of irisin, as well as its precursor Fndc5, were reduced at mRNA and protein expression levels in muscle during ageing. In addition, via phenotypic analysis of FNDC5/irisin knockout mice, we found that FNDC5/irisin deficiency in aged mice exhibited aggravated muscle atrophy including smaller grip strength (-3.23%, P < 0.05), muscle weights (quadriceps femoris [QU]: -20.05%; gastrocnemius [GAS]: -17.91%; tibialis anterior [TA]: -19.51%, all P < 0.05), fibre size (QU: P < 0.01) and worse molecular phenotypes compared with wild-type mice. We then delivered recombinant irisin protein intraperitoneally into ageing or aged mice and found that it could improve sarcopenia with grip strength (+18.42%, P < 0.01 or +13.88%, P < 0.01), muscle weights (QU: +9.02%, P < 0.01 or +16.39%, P < 0.05), fibre size (QU: both P < 0.05) and molecular phenotypes and alleviated age-associated fat tissues expansion, insulin resistance and hepatic steatosis (all P < 0.05), accompanied with altered gene signatures. CONCLUSIONS: Together, this study revealed the importance of irisin in the maintenance of muscle physiology and systematic energy homeostasis during ageing and suggested a potent therapeutic strategy against age-associated metabolic diseases via irisin administration.


Assuntos
Sarcopenia , Animais , Camundongos , Fibronectinas/genética , Fibronectinas/metabolismo , Camundongos Knockout , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Cell Mol Immunol ; 19(12): 1333-1346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36348079

RESUMO

Tissue-resident macrophages are derived from different precursor cells and display different phenotypes. Reconstitution of the tissue-resident macrophages of inflamed or damaged tissues in adults can be achieved by bone marrow-derived monocytes/macrophages. Using lysozyme (Lysm)-GFP-reporter mice, we found that alveolar macrophages (AMs), Kupffer cells, red pulp macrophages (RpMacs), and kidney-resident macrophages were Lysm-GFP-, whereas all monocytes in the fetal liver, adult bone marrow, and blood were Lysm-GFP+. Donor-derived Lysm-GFP+ resident macrophages gradually became Lysm-GFP- in recipients and developed gene expression profiles characteristic of tissue-resident macrophages. Thus, Lysm may be used to distinguish newly formed and long-term surviving tissue-resident macrophages that were derived from bone marrow precursor cells in adult mice under pathological conditions. Furthermore, we found that Irf4 might be essential for resident macrophage differentiation in all tissues, while cytokine and receptor pathways, mTOR signaling pathways, and fatty acid metabolic processes predominantly regulated the differentiation of RpMacs, Kupffer cells, and kidney macrophages, respectively. Deficiencies in ST2, mechanistic target of rapamycin (mTOR) and fatty acid-binding protein 5 (FABP5) differentially impaired the differentiation of tissue-resident macrophages from bone marrow-derived monocytes/macrophages in the lungs, liver, and kidneys. These results indicate that a combination of shared and unique signaling pathways coordinately shape tissue-resident macrophage differentiation in various tissues.


Assuntos
Macrófagos , Muramidase , Camundongos , Animais , Muramidase/metabolismo , Macrófagos/metabolismo , Monócitos , Células de Kupffer , Serina-Treonina Quinases TOR/metabolismo
14.
Nat Commun ; 13(1): 7260, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434066

RESUMO

G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Homeostase , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo
15.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291105

RESUMO

Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an "alarmin" by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.


Assuntos
Doenças Autoimunes , Infecções , Inflamação , Interleucina-1 , Interleucina-33 , Neoplasias , Humanos , Doenças Autoimunes/imunologia , Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Neoplasias/imunologia , Microambiente Tumoral , Inflamação/imunologia , Transplante de Órgãos , Infecções/imunologia
16.
Blood Adv ; 6(22): 5844-5856, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35728062

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in treating a variety of hematologic malignancies, but resistance to this treatment in some patients limited its wider application. Using an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) screening, we identified and validated loss of CD58 conferred immune evasion from CAR T cells in vitro and in vivo. CD58 is a ligand of the T-cell costimulatory molecule CD2, and CD58 mutation or downregulated expression is common in hematological tumors. We found that disruption of CD58 in tumor cells induced the formation of suboptimal immunological synapse (IS) with CAR T cells, which conferred functional impairment of CAR T cells, including the attenuation of cell expansion, degranulation, cytokine secretion, and cytotoxicity. In summary, we describe a potential mechanism of tumor-intrinsic resistance to CAR T-cell therapy and suggest that this mechanism may be leveraged for developing therapeutic strategies to overcome resistance to CAR T-cell therapy in B-cell malignancies.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Linfócitos B , Linfócitos T
17.
JAMA Netw Open ; 5(5): e229655, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35552726

RESUMO

Importance: In observational oncology studies of solid tumors, response to treatment can be evaluated based on electronic health record (EHR) documentation (clinician-assessed response [CAR]), an approach different from standardized radiologist-measured response (Response Evaluation Criteria in Solid Tumours [RECIST] 1.1). Objective: To evaluate the feasibility of an imaging response based on RECIST (IRb-RECIST) and the concordance between CAR and imaging response based on RECIST assessments, and investigate discordance causes. Design, Setting, and Participants: This cohort study used an EHR-derived, deidentified database that included patients with stage IV non-small cell lung cancer (NSCLC) diagnosed between January 1, 2011, to June 30, 2019, selected from 3 study sites. Data analysis was conducted in August, 2020. Exposures: Undergoing first-line therapy and imaging assessments of response to treatment. Main Outcomes and Measures: In this study, CAR assessments (referred to in prior publications as "real-world response" [rwR]) were defined as clinician-documented changes in disease burden at radiologic evaluation time points; they were abstracted manually and assigned to response categories. The RECIST-based assessments accommodated routine practice patterns by using a modified version of RECIST 1.1 (IRb-RECIST), with independent radiology reads. Concordance was calculated as the percent agreement across all response categories and across a dichotomous stratification (response [complete or partial] vs no response), unconfirmed or confirmed. Results: This study found that, in 100 patients evaluated for concordance, agreement between CAR and IRb-RECIST was 71% (95% CI, 61%-80%), and 74% (95% CI, 64%-82%) for confirmed and unconfirmed response, respectively. There were more responders using CAR than IRb-RECIST (40 vs 29 with confirmation; 64 vs 43 without confirmation). The main sources of discordance were the different use of thresholds for tumor size changes by RECIST vs routine care, and unavailable baseline or follow-up scans resulting in inconsistent anatomic coverage over time. Conclusions and Relevance: In this cohort study of patients with stage IV NSCLC, we collected routine-care imaging, showing the feasibility of response evaluation using IRb-RECIST criteria with independent centralized review. Concordance between CAR and centralized IRb-RECIST was moderate. Future work is needed to evaluate the generalizability of these results to broader populations, and investigate concordance in other clinical settings.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Critérios de Avaliação de Resposta em Tumores Sólidos
18.
Biomaterials ; 285: 121541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533443

RESUMO

Obesity is the major risk factor for metabolic diseases such as fatty liver, hyperlipidemia and insulin resistance. Beige fat has been recognized as a therapeutic target considering its great potential to burn energy. Since the evolutionary discovery of RNA interference and its utilization for gene knockdown in mammalian cells, a remarkable progress has been achieved in siRNA-based therapeutics. However, efficient delivery of siRNA into adipose tissues or differentiated adipocytes is challenging due to high lipid contents in these tissues. Here, we discovered a highly efficient fluoropolypeptide with excellent serum and lipid tolerance for this purpose from a library of amphiphlic polypeptides. The lead material F13-16 exhibited high gene knockdown efficacies in undifferentiated preadipocytes and differentiated adipocytes, as well as adipose tissues. It successfully delivered a siRNA targeting Tle3, an established suppressor gene for energy expenditure, in beige fat, and thereby ameliorated diet-induced obesity and metabolic disorders by increasing energy expenditure and thermogenic capacity. The results demonstrated that fluoropolypeptide is a useful tool for the delivery of siRNA-based therapeutics into adipocyte/adipose tissues for gene therapy.


Assuntos
Tecido Adiposo Branco , Dieta Hiperlipídica , Tecido Adiposo Branco/metabolismo , Animais , Lipídeos/uso terapêutico , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/terapia , Peptídeos/uso terapêutico , Preparações Farmacêuticas , RNA Interferente Pequeno/metabolismo , Termogênese/genética
19.
Cell Discov ; 8(1): 24, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256606

RESUMO

Articular cartilage repair and regeneration is an unmet clinical need because of the poor self-regeneration capacity of the tissue. In this study, we found that the expression of prostaglandin E receptor 4 (PTGER4 or EP4) was largely increased in the injured articular cartilage in both humans and mice. In microfracture (MF) surgery-induced cartilage defect (CD) and destabilization of the medial meniscus (DMM) surgery-induced CD mouse models, cartilage-specific deletion of EP4 remarkably promoted tissue regeneration by enhancing chondrogenesis and cartilage anabolism, and suppressing cartilage catabolism and hypertrophy. Importantly, knocking out EP4 in cartilage enhanced stable mature articular cartilage formation instead of fibrocartilage, and reduced joint pain. In addition, we identified a novel selective EP4 antagonist HL-43 for promoting chondrocyte differentiation and anabolism with low toxicity and desirable bioavailability. HL-43 enhanced cartilage anabolism, suppressed catabolism, prevented fibrocartilage formation, and reduced joint pain in multiple pre-clinical animal models including the MF surgery-induced CD rat model, the DMM surgery-induced CD mouse model, and an aging-induced CD mouse model. Furthermore, HL-43 promoted chondrocyte differentiation and extracellular matrix (ECM) generation, and inhibited matrix degradation in human articular cartilage explants. At the molecular level, we found that HL-43/EP4 regulated cartilage anabolism through the cAMP/PKA/CREB/Sox9 signaling. Together, our findings demonstrate that EP4 can act as a promising therapeutic target for cartilage regeneration and the novel EP4 antagonist HL-43 has the clinical potential to be used for cartilage repair and regeneration.

20.
Front Endocrinol (Lausanne) ; 13: 851520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265044

RESUMO

Nonalcoholic fatty liver disease (NAFLD), characterized by extensive triglyceride accumulation in hepatocytes, may progress to nonalcoholic steatohepatitis (NASH) with liver fibrosis and inflammation and increase the risk of cirrhosis, cancer, and death. It has been reported that physical exercise is effective in ameliorating NAFLD and NASH, while skeletal muscle dysfunctions, including lipid deposition and weakness, are accompanied with NAFLD and NASH. However, the molecular characteristics and alterations in skeletal muscle in the progress of NAFLD and NASH remain unclear. In the present study, we provide a comprehensive analysis on the similarity and heterogeneity of quadriceps muscle in NAFLD and NASH mice models by RNA sequencing. Importantly, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analysis revealed that NAFLD and NASH led to impaired glucose and lipid metabolism and deteriorated functionality in skeletal muscle. Besides this, we identified that myokines possibly mediate the crosstalk between muscles and other metabolic organs in pathological conditions. Overall, our analysis revealed a comprehensive understanding of the molecular signature of skeletal muscles in NAFLD and NASH, thus providing a basis for physical exercise as an intervention against liver diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Perfilação da Expressão Gênica , Inflamação/patologia , Cirrose Hepática , Camundongos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA