Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Adv Sci (Weinh) ; 10(31): e2302229, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726225

RESUMO

The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.


Assuntos
Neoplasias da Mama , Dineínas , Humanos , Feminino , Dineínas/metabolismo , Actomiosina/metabolismo , Movimento Celular , Hidrogéis
2.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066378

RESUMO

Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.

3.
J Biol Chem ; 298(6): 102002, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504351

RESUMO

P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened ß2- and ß3-sheets and their linker (loop ß2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. We show that deletion of this longer structural element leads to the loss of P2X7 function. Furthermore, by combining mutagenesis, chimera construction, surface expression, and protein stability analysis, we found that the deletion of the longer ß2,3-loop affects P2X7 surface expression but, more importantly, that this loop affects channel gating of P2X7. We propose that the longer ß2,3-sheets may have a negative regulatory effect on a loop on the head domain and on the structural element formed by E171 and its surrounding regions. Understanding the role of the unique structure of the P2X7 receptor in the gating process will aid in the development of selective drugs targeting this subtype.


Assuntos
Trifosfato de Adenosina , Conformação Proteica em Folha beta , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Humanos , Inflamação , Conformação Proteica em Folha beta/genética , Estabilidade Proteica , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ativação Transcricional
4.
Mol Ther Nucleic Acids ; 28: 190-201, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35402077

RESUMO

Colorectal neoplasia differentially expressed (CRNDE) is an oncogenic long noncoding RNA (lncRNA). Increased CRNDE expression was initially discovered in colorectal cancer and then in a variety of solid tumors and hematological malignancies. CRNDE participates in multiple biological processes, such as cell proliferation, differentiation, migration, and apoptosis. CRNDE has been shown to modulate target gene expression through multiple mechanisms, including transcriptional regulation, post-transcriptional regulation, and competition for microRNA (miRNA) binding. In this review, we summarize the evidence that supports CRNDE in the diagnosis and prognosis predicting of cancers. The functional roles and molecular mechanisms of CRNDE are further described for major types of solid tumors and hematological malignancies. The therapeutic potential of CRNDE as a target for research and development is also discussed.

5.
J Biol Chem ; 296: 100655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901491

RESUMO

Highly conserved amino acids are generally anticipated to have similar functions across a protein superfamily, including that of the P2X ion channels, which are gated by extracellular ATP. However, whether and how these functions are conserved becomes less clear when neighboring amino acids are not conserved. Here, we investigate one such case, focused on the highly conserved residue from P2X4, E118 (rat P2X4 numbering, rP2X4), a P2X subtype associated with human neuropathic pain. When we compared the crystal structures of P2X4 with those of other P2X subtypes, including P2X3, P2X7, and AmP2X, we observed a slightly altered side-chain orientation of E118. We used protein chimeras, double-mutant cycle analysis, and molecular modeling to reveal that E118 forms specific contacts with amino acids in the "beak" region, which facilitates ATP binding to rP2X4. These contacts are not present in other subtypes because of sequence variance in the beak region, resulting in decoupling of this conserved residue from ATP recognition and/or channel gating of P2X receptors. Our study provides an example of a conserved residue with a specific role in functional proteins enabled by adjacent nonconserved residues. The unique role established by the E118-beak region contact provides a blueprint for the development of subtype-specific inhibitors of P2X4.


Assuntos
Trifosfato de Adenosina/metabolismo , Ativação do Canal Iônico , Receptores Purinérgicos P2X4/metabolismo , Sequência de Aminoácidos , Animais , Eletrofisiologia , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Peixe-Zebra
6.
Cell Death Discov ; 6(1): 121, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33298855

RESUMO

The PML/RARα fusion protein acts in concert with cooperative genetic events in the development of acute promyelocytic leukemia (APL). However, oncogenic long non-coding RNAs (lncRNAs) cooperating with PML/RARα remain under-explored. Here, we first identified a set of pathogenesis-related lncRNAs, aberrantly expressed in APL using RNA-seq data from a large cohort of acute myeloid leukemia (AML) patients and normal counterparts. Among the pathogenesis-related lncRNAs, one of the evolutionarily conservative lncRNAs CRNDE (Colorectal Neoplasia Differentially Expressed) drew our attention. We found that CRNDE was highly expressed in the disease state but not in the preleukemic stage of APL, suggesting that CRNDE might be a secondary event coordinating with PML/RARα to promote APL development. Functional analysis showed that CRNDE knockdown induced differentiation and inhibited proliferation of APL cells, and prolonged survival of APL mice. Further mechanistic studies showed that CRNDE elicited its oncogenic effects through binding the miR-181 family and thereby regulating NOTCH2. Finally, we found that high CRNDE expression was also significantly correlated with NPM1 mutations and contributed to the differentiation block in NPM1-mutant AML. Collectively, our findings shed light on the importance of oncogenic lncRNAs in the development of AML and provide a promising target for AML therapy.

7.
Hum Mol Genet ; 29(20): 3350-3360, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33030203

RESUMO

Proteus syndrome is a progressive overgrowth disorder with vascular malformations caused by mosaic expression of the AKT1 c.49G > A, p.(E17K) activating variant which was predicted to cause lethality if expressed ubiquitously. To test that hypothesis, we used the ACTB-Cre gene to activate a conditional Akt1 p.(E17K) allele in the mouse. No offspring that was heterozygous for both Cre and the conditional allele (ßA-Akt1WT/flx) was viable. Fewer than expected numbers of ßA-Akt1WT/flx embryos were seen beginning at E11.5, but a few survived until E17.5. The phenotype ranged from mild to severe, but generally ßA-Akt1WT/flx embryos had fewer visible blood vessels and more hemorrhages than their wild-type littermates, which was suggestive of a vascular abnormality. Examination of E13.5 limb skin showed a primitive capillary network with increased branching complexity and abnormal patterning compared with wild-type skin. By E15.5, wild-type skin had undergone angiogenesis and formed a hierarchical network of remodeled vessels, whereas in ßA-Akt1WT/flx embryos, the capillary network failed to remodel. Mural cell coverage of the blood vessels was also reduced in ßA-Akt1WT/flx skin compared with that of wild type. Restricting expression of Akt1E17K to endothelial, cardiac or smooth muscle cells resulted in viable offspring and remodeled vasculature and did not recapitulate the ßA-Akt1WT/flx phenotype. We conclude that ubiquitous expression of Akt1E17K suppresses remodeling and inhibits the formation of a normal skin vasculature. We postulate that this failure prevents proper circulation necessary to support the growing embryo and that it is the result of interactions of multiple cell types with increased AKT signaling.


Assuntos
Perda do Embrião/patologia , Embrião de Mamíferos/patologia , Neovascularização Patológica/patologia , Doenças Vasculares Periféricas/patologia , Síndrome de Proteu/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Perda do Embrião/etiologia , Perda do Embrião/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Doenças Vasculares Periféricas/etiologia , Doenças Vasculares Periféricas/metabolismo , Síndrome de Proteu/etiologia , Síndrome de Proteu/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
8.
Mol Biol Cell ; 31(18): 1974-1987, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32583739

RESUMO

Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase-activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.


Assuntos
Neovascularização Fisiológica/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Indutores da Angiogênese , Animais , Colágeno/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Neovascularização Fisiológica/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(5): 1696-1700, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31607334

RESUMO

Abstract  The promyelocytic leukemia (PML) gene encoded PML protein as a tumor suppressor protein, plays important roles in the occurrence and development of various cancers including acute promyelocytic leukemia. Recent studies have indicated that there are a variety of post-translational modifications of the PML protein, such as SUMOylation, ubiquitination, phosphorylation, and acetylation in cells. These modifications of the PML protein can directly affect the formation of PML nuclear bodies (PML-NBs), repair DNA damage, and modulate cell apoptosis. Furthermore, the abnormal modifications of PML not only result in the occurrence of hematopoietic tumors, but also are closely related to the drug-resistance of cancer. Therefore, investigating the post-translational modifications of PML is significant to uncover the mechanism of formation and functions of PML-NBs, thus contributing to the prevention and treatment of related hematopoietic tumors. In this review, the characteristics of the post-translational modifications of PML protein and the relationship between these modifications and functions of PML-NBs are summarized so as to provide the potential targets for the treatment of related cancers.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Corpos de Inclusão Intranuclear , Proteínas Nucleares , Proteína da Leucemia Promielocítica , Processamento de Proteína Pós-Traducional
10.
Eur J Pharmacol ; 864: 172715, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593687

RESUMO

Non-alcoholic steatohepatitis (NASH) is a key step in the progression of non-alcoholic fatty liver disease (NAFLD), which causes serious health problems worldwide. The nucleotide-binding oligomerization domain, leucine-rich repeat-containing receptor-containing pyrin domain 3 (NLRP3) inflammasome and pyroptosis play crucial roles in the progression of NASH. Our team has provided clinical evidence of the effects of glucagon-like peptide-1 (GLP-1) on the improvement in liver function and histological resolution of NAFLD. Preliminary work has demonstrated that GLP-1 inhibited NLRP3 inflammasome activation in a mouse model of NAFLD. We further explored the potential molecular mechanisms underlying the anti-inflammatory effect of liraglutide, a long-acting GLP-1 analog, in the treatment of NASH. We established a HepG2 cell model of NASH using double stimulation with palmitic acid and lipopolysaccharide to assess NLRP3 inflammasome and pyroptotic cell activity and to evaluate mitochondrial function and mitophagy. Liraglutide reduced lipid accumulation, inhibited NLRP3 inflammasome and pyroptosis activation, attenuated mitochondrial dysfunction and reactive oxygen species generation, augmented mitophagy in hepatocytes. Mitophagy inhibition with 3-methyladenine/PINK1-directed siRNA weakened the liraglutide-mediated suppression of inflammatory injury. We propose that liraglutide suppresses NLRP3 inflammasome-induced hepatocyte pyroptosis via mitophagy to slow the progression of NASH.


Assuntos
Inflamassomos/metabolismo , Liraglutida/farmacologia , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Piroptose/efeitos dos fármacos , Progressão da Doença , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Liraglutida/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Biol Cell ; 30(16): 1961-1973, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31318315

RESUMO

Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Actomiosina/metabolismo , Animais , Polaridade Celular , Forma Celular , Fibroblastos/metabolismo , Camundongos , Microtúbulos/metabolismo , Fibras de Estresse/metabolismo
12.
Front Med ; 13(3): 330-343, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29808251

RESUMO

Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However, whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3 reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types. Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Neoplasias/genética , RNA Longo não Codificante/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias/metabolismo , RNA Longo não Codificante/efeitos dos fármacos
13.
Cell Death Dis ; 9(6): 651, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844435

RESUMO

Circular RNAs (circRNAs) are a novel class of powerful regulators in gene expression and participate in the pathogenesis of many diseases, including cancer. However, little is known about the roles of circRNAs in the development and treatment of acute promyelocytic leukemia (APL). Here we report the expression profiling and function of circRNAs in APL, including their dynamic regulation during all-trans retinoic acid (ATRA)-induced differentiation. We performed two independent ribosomal RNA-minus RNA-sequencing (Ribo-minus RNA-seq) experiments with and without RNase R treatment on APL patient-derived NB4 cells and identified a total of 4313 circRNAs, including 1098 newly identified circRNAs. Detailed analysis showed that circRNAs expressed in APL cells were mostly exon-derived, not by-products during splicing, and could be distinguished from hematopoietic stem cells, neutrophils and lymphocytes. The true presence and stability of circRNAs were verified both in NB4 cells and primary APL patient samples. Moreover, we conducted a time-series analysis of circRNAs on ATRA-treated NB4 cells and uncovered 508 circRNAs with dynamic expression during ATRA treatment, including 246 upregulated and 262 downregulated. Further evidence demonstrated that the majority of circRNAs were regulated independently of their host linear mRNAs. Detailed functional experiments demonstrated that circ-HIPK2, one of the differentially expressed circRNAs, significantly influenced ATRA-induced differentiation of APL cells. Further mechanistic studies revealed that circ-HIPK2 was located in cytoplasm and served as a sponge for differentiation-associated miR-124-3p. Finally, circ-HIPK2 expression in APL patients was significantly lower than that in normal peripheral mononuclear cells and other subtypes of AML, indicating its potential role as an APL biomarker. Our study indicates the biological functions of circRNAs in the development and treatment of APL, and provides a comprehensive circRNA resource for future studies.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Promielocítica Aguda/genética , RNA Circular/genética , Tretinoína/farmacologia , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Genoma Humano , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
14.
Gene ; 664: 152-167, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679756

RESUMO

The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trombocitopenia/congênito , Animais , Linhagem Celular , Surdez/genética , Humanos , Camundongos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Mutação , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Neoplasias/genética , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Fosforilação , Insuficiência Renal Crônica/genética , Trombocitopenia/genética
15.
Sci Rep ; 7(1): 17998, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269861

RESUMO

Previous studies have demonstrated an association between high body mass index (BMI) and acute myeloid leukemias (AML), particularly acute promyelocytic leukemia (APL). However, the effect of obesity and overweight on the incidence of AML is not supported by all studies, and the relationship between obesity and prognosis of AML and APL has not been established. Thus, we conducted a meta-analysis to determine the role of BMI on the risk and clinical outcome of AML, including APL. Twenty-six eligible studies enrolling 12,971 AML (including 866 APL) patients were retrieved and analyzed. Overweight and obesity was associated with an increased incidence of AML (relative risk [RR], 1.23; 95% confidence interval [CI], 1.12-1.35; P < 0.001). High BMI did not significantly affect overall survival (OS) (hazard ratio [HR], 0.97; 95% CI, 0.92-1.03; P = 0.323) or disease-free survival (HR, 0.98; 95% CI, 0.88-1.10; P = 0.755) in patients with non-APL AML. By contrast, APL patients with high BMI had shorter OS (HR, 1.77; 95% CI, 1.26-2.48; P = 0.001) and a higher risk of differentiation syndrome (HR, 1.53; 95% CI, 1.03-2.27, P = 0.04). Overall, our findings suggest that patients with overweight or obesity have a higher incidence of AML, and high BMI is a predictor of adverse clinical outcomes in APL.


Assuntos
Índice de Massa Corporal , Leucemia Mieloide Aguda/epidemiologia , Leucemia Promielocítica Aguda/epidemiologia , Humanos , Incidência , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/mortalidade , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/etiologia , Leucemia Promielocítica Aguda/mortalidade , Prognóstico , Fatores de Risco
16.
Drug Deliv ; 24(1): 1284-1294, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28891337

RESUMO

BACKGROUND: Multifunctional magnetic nanoparticles (MNP) have been newly developed for tumor-targeted drug carriers. To address challenges including biocompatibility, stability, nontoxicity, and targeting efficiency, here we report the novel drug deliverer poly(ethylene glycol) carboxyl-poly(ɛ-caprolactone) modified MNP (PEG-PCCL-MNP) suitable for magnetic targeting based on our previous studies. METHODS: Their in vitro characterization and cytotoxicity assessments, in vivo cytotoxicity assessments, and antitumor efficacy study were elaborately investigated. RESULTS: The size of PEG-PCCL-MNP was 79.6 ± 0.945 nm. PEG-PCCL-MNP showed little in vitro or in vivo cytotoxicity and good biocompatibility, as well as effective tumor-specific cell targeting for drug delivery with the presence of external magnetic field. DISCUSSION: PEG-PCCL-MNP is a potential candidate of biocompatible and tumor-specific targeting drug vehicle for hydrophobic drugs.


Assuntos
Neoplasias , Linhagem Celular Tumoral , Portadores de Fármacos , Compostos Férricos , Humanos , Nanopartículas Metálicas , Paclitaxel , Polietilenoglicóis , Polímeros
17.
J Cell Sci ; 130(16): 2696-2706, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687623

RESUMO

Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Pericárdio/citologia , Pericárdio/embriologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Coração/embriologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Organogênese/genética
18.
Peptides ; 92: 1-8, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28450048

RESUMO

Retinal ganglion cells (RGCs), which exist in the inner retina, are the retinal neurons which can be damaged in the early stage of diabetic retinopathy (DR). Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, exerts biological functions by binding the receptor (GLP-1R), the expression of which in RGC-5 cells was first shown by our team in 2012. It was reported that liraglutide prevented retinal neurodegeneration in diabetic subjects. However, the involvement of mechanisms such as autophagy and mitochondrial balance in liraglutide-induced retinal protection is unknown. Here, we aimed to investigate the protective effects of liraglutide and explore the potential mechanisms of liraglutide-induced retinal RGC protection. RGC-5 cells were treated with H2O2 and/or liraglutide. Cell viability was detected with the CCK-8 kit. The axon marker GAP43, autophagy and mitophagy indicators LC3A/B, Beclin-1, p62, Parkin, BCL2/Adenovirus E1B 19kDa protein-interacting protein 3-like (BNIP3L) and the key regulator of mitochondrial biogenesis PGC-1α were examined via western blot analysis. Autophagy was also evaluated using the ImageXpress Micro XLS system and transmission electron microscopy (TEM). Reactive oxygen species (ROS), mitochondrial membrane potential and fluorescent staining for mitochondria were also measured using the ImageXpress Micro XLS system. Our results showed that pretreatment with liraglutide significantly prevented H2O2-induced cell viability decline, mitochondrial morphological deterioration and induction of autophagy, which appeared as increased expression of LC3 II/I and Beclin-1, along with p62 degradation. Moreover, liraglutide suppressed the H2O2-induced decline in GAP43 expression, thus protecting cells. However, rapamycin induced autophagy and blocked the protective process. Liraglutide also provided mitochondrial protection and appeared to alleviate H2O2-induced ROS overproduction and a decline in mitochondrial membrane potential, partially by promoting mitochondrial generation and attenuating mitophagy. In conclusion, liraglutide attenuates H2O2 induced RGC-5 cell injury by inhibiting autophagy through maintaining a balance between mitochondrial biogenesis and mitophagy.


Assuntos
Autofagia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Análise de Variância , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 5: 14068, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369831

RESUMO

To investigate the contribution of nonmuscle myosin II-A (NM II-A) to early cardiac development we crossed Myh9 floxed mice and Nkx2.5 cre-recombinase mice. Nkx2.5 is expressed in the early heart (E7.5) and later in the tongue epithelium. Mice homozygous for deletion of NM II-A (A(Nkx)/A(Nkx)) are born at the expected ratio with normal hearts, but consistently develop an invasive squamous cell carcinoma (SCC) of the tongue (32/32 A(Nkx)/A(Nkx)) as early as E17.5. To assess reproducibility a second, independent line of Myh9 floxed mice derived from a different embryonic stem cell clone was tested. This second line also develops SCC indistinguishable from the first (15/15). In A(Nkx)/A(Nkx) mouse tongue epithelium, genetic deletion of NM II-A does not affect stabilization of TP53, unlike a previous report for SCC. We attribute the consistent, early formation of SCC with high penetrance to the role of NM II in maintaining mitotic stability during karyokinesis.


Assuntos
Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Deleção de Genes , Miosina não Muscular Tipo IIA/genética , Neoplasias da Língua/genética , Animais , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Variação Genética , Genótipo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Knockout , Mucosa/metabolismo , Mucosa/patologia , Gradação de Tumores , Invasividade Neoplásica , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Neoplasias da Língua/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
PLoS Biol ; 13(4): e1002122, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25848986

RESUMO

The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development.


Assuntos
Palato/embriologia , Animais , Camundongos , Morfogênese , Miosinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA