Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci China Life Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39235560

RESUMO

Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.

2.
Nat Methods ; 21(9): 1624-1633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025969

RESUMO

Studies of molecular and cellular functions of small-molecule inhibitors in cancer treatment, eliciting effects by targeting genome and epigenome associated proteins, requires measurement of drug-target engagement in single-cell resolution. Here we present EpiChem for in situ single-cell joint mapping of small molecules and multimodal epigenomic landscape. We demonstrate single-cell co-assays of three small molecules together with histone modifications, chromatin accessibility or target proteins in human colorectal cancer (CRC) organoids. Integrated multimodal analysis reveals diverse drug interactions in the context of chromatin states within heterogeneous CRC organoids. We further reveal drug genomic binding dynamics and adaptive epigenome across cell types after small-molecule drug treatment in CRC organoids. This method provides a unique tool to exploit the mechanisms of cell type-specific drug actions.


Assuntos
Cromatina , Neoplasias Colorretais , Epigenoma , Organoides , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Cromatina/metabolismo , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Organoides/metabolismo , Epigenômica/métodos , Antineoplásicos/farmacologia , Histonas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Biochem Biophys Res Commun ; 733: 150436, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39053102

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a major cause of liver damage during hepatic resection, transplantation, and other surgical procedures, often leading to graft failure and liver dysfunction. Recent studies have identified ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, as a key contributor to IRI. In this study, we investigated the protective effects of Ticlopidine, a thienopyridine compound and platelet aggregation inhibitor, on hepatic IRI. Using a C57BL/6J mouse model, we demonstrated that prophylactic Ticlopidine treatment significantly reduced necrotic and fibrotic areas in liver tissues, as well as serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST). Prussian Blue staining revealed that Ticlopidine pretreatment decreased iron accumulation in hepatic tissues, whereas markers of lipid peroxidation (malondialdehyde and 4-hydroxynonenal) and ferroptosis (PTGS2) were significantly downregulated. Additionally, Ticlopidine ameliorated inflammatory infiltration as indicated by reduced Gr-1 staining. In vitro, Ticlopidine dose-dependently inhibited ferroptosis induced by various inducers in liver cancer cell lines HUH7 and fibrosarcoma cells HT1080. The protective effects involved partial rescue of lipid peroxidation, significant reduction of ferrous iron levels, and strong protection against mitochondrial damage. These findings suggested that Ticlopidine acts as a broad-spectrum ferroptosis inhibitor, offering a promising therapeutic approach for protecting the liver against IRI.


Assuntos
Ferroptose , Fígado , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Ticlopidina , Animais , Ferroptose/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ticlopidina/farmacologia , Ticlopidina/análogos & derivados , Camundongos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular Tumoral , Ferro/metabolismo
4.
Free Radic Biol Med ; 222: 229-243, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906233

RESUMO

Ferroptosis is a form of iron-dependent cell death that has attracted significant attention for its potential role in numerous diseases. Targeted inhibition of ferroptosis could be of potential use in treating diseases: such as drug induced liver injury (DILI). Ferroptosis can be antagonized by the xCT/GSH/GPX4, FSP1/CoQ10, DHODH/CoQ10, GCH1/BH4, and NRF2 pathways. Identifying novel anti-ferroptosis pathways will further promote our understanding of the biological nature of ferroptosis and help discover new drugs targeting ferroptosis related human diseases. In this study, we identified the clinically used drug mifepristone (RU486) as a novel ferroptosis inhibitor. Mechanistically, RU486 inhibits ferroptosis by inducing GSH synthesis pathway, which supplies GSH for glutathione-S-transferase (GST) mediated 4-HNE detoxification. Furthermore, RU486 induced RLIP76 and MRP1 export 4-HNE conjugate contributes to its anti-ferroptosis activity. Interestingly, RU486 induced GSH/GSTs/RLIP76&MRP1 anti-ferroptosis pathway acts independent of classic anti-ferroptosis systems: including xCT/GSH/GPX4, FSP1, DHODH, GCH1, SCD1 and FTH1. Moreover, NRF2 was identified to be important for RU486's anti-ferroptosis activity by inducing downstream gene expression. Importantly, in mouse model, RU486 showed strong protection effect on acetaminophen (APAP)-induced acute liver injury, evidenced by decreased ALT, AST level and histological recovery after APAP treatment. Interestingly, RU486 also decreased oxidative markers, including 4-HNE and MDA, and induced NRF2 activation as well as GSTs, MRP1 expression. Together, these data suggest NRF2/GSH/GST/RLIP76&MRP1 mediated detoxification pathway as an important independent anti-ferroptosis pathway act both in vitro and in vivo.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Glutationa Transferase , Glutationa , Mifepristona , Fator 2 Relacionado a NF-E2 , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Mifepristona/farmacologia , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas Ativadoras de GTPase
5.
Oral Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696357

RESUMO

OBJECTIVE: This study aimed to clarify the relationship between FADD amplification and overexpression and the tumor immune microenvironment. METHODS: Immunohistochemical staining and bioanalysis were used to analyze the association between FADD expression in tumor cells and cells in tumor microenvironment. RNA-seq analysis was used to detect the differences in gene expression upon FADD overexpression. Flow cytometry and multicolor immunofluorescence staining (mIHC) were used to detect the differences in CD8+ T-cell infiltration in FADD-overexpressed cells or tumor tissues. RESULTS: Overexpression of FADD significantly promoted tumor growth. Cells with high FADD expression presented high expression of CD276 and FGFBP1 and low expression of proinflammatory factors (such as IFIT1-3 and CXCL8), which reduced the percentage of CD8+ T cells and created a "cold tumor" immune microenvironment, thus promoting tumor progression. In vivo and in vitro experiment confirmed that tumor tissues with excessive FADD expression exhibited CD8+ T-cell exclusion in the microenvironment. CONCLUSION: Our preliminary investigation has discovered the association between FADD expression and the immunosuppressive microenvironment in HNSCC. Due to the high frequent amplification of the chromosomal region 11q13.3, where FADD is located, targeting FADD holds promise for improving the immune-inactive state of tumors, subsequently inhibiting HNSCC tumor progression.

7.
Nat Prod Res ; : 1-18, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586940

RESUMO

Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 µM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 µM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 µM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.

8.
Chin Med J (Engl) ; 137(9): 1033-1043, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38545694

RESUMO

ABSTRACT: Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.


Assuntos
Adenosina , Adenosina/análogos & derivados , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Adenosina/metabolismo , Sistema Hematopoético , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Processamento Pós-Transcricional do RNA/genética
9.
Protein Pept Lett ; 31(3): 236-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303525

RESUMO

BACKGROUND: DDX3 is a protein with RNA helicase activity that is involved in a variety of biological processes, and it is an important protein target for the development of broad-spectrum antiviral drugs, multiple cancers and chronic inflammation. OBJECTIVES: The objective of this study is to establish a simple and efficient method to express and purify DDX3 protein in E. coli, and the recombinant DDX3 should maintain helicase activity for further tailor-made screening and biochemical function validation. METHODS: DDX3 cDNA was simultaneously cloned into pET28a-TEV and pNIC28-Bsa4 vectors and transfected into E. coli BL21 (DE3) to compare one suitable prokaryotic expression system. The 6×His-tag was fused to the C-terminus of DDX3 to form a His-tagging DDX3 fusion protein for subsequent purification. Protein dissolution buffer and purification washing conditions were optimized. The His-tagged DDX3 protein would bind with the Ni-NTA agarose by chelation and collected by affinity purification. The 6×His-tag fused with N-terminal DDX3 was eliminated from DDX3 by TEV digestion. A fine purification of DDX3 was performed by gel filtration chromatography. RESULTS: The recombinant plasmid pNIC28-DDX3, which contained a 6×His-tag and one TEV cleavage site at the N terminal of DDX3 sequence, was constructed for DDX3 prokaryotic expression and affinity purification based on considering the good solubility of the recombinant His-tagging DDX3, especially under 0.5 mM IPTG incubation at 18°C for 18 h to obtain more soluble DDX3 protein. Finally, the exogenous recombinant DDX3 protein was obtained with more than 95% purity by affinity purification on the Ni-NTA column and removal of miscellaneous through gel filtration chromatography. The finely-purified DDX3 still retained its ATPase activity. CONCLUSION: A prokaryotic expression pNIC28-DDX3 system is constructed for efficient expression and affinity purification of bioactive DDX3 protein in E. coli BL21(DE3), which provides an important high-throughput screening and validation of drugs targeting DDX3.


Assuntos
Cromatografia de Afinidade , RNA Helicases DEAD-box , Escherichia coli , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Clonagem Molecular , Expressão Gênica
10.
Curr Med Sci ; 44(1): 134-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273178

RESUMO

OBJECTIVE: SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS: The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS: SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION: SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.


Assuntos
Linfoma de Célula do Manto , Adulto , Animais , Humanos , Camundongos , Apoptose/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Camundongos Nus , Proteínas do Tecido Nervoso , Peptídeo Hidrolases/uso terapêutico , RNA Mensageiro , Proteínas Wnt/uso terapêutico
11.
Chin Med J (Engl) ; 137(3): 283-293, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37386732

RESUMO

BACKGROUND: The conversion of adenosine (A) to inosine (I) through deamination is the prevailing form of RNA editing, impacting numerous nuclear and cytoplasmic transcripts across various eukaryotic species. Millions of high-confidence RNA editing sites have been identified and integrated into various RNA databases, providing a convenient platform for the rapid identification of key drivers of cancer and potential therapeutic targets. However, the available database for integration of RNA editing in hematopoietic cells and hematopoietic malignancies is still lacking. METHODS: We downloaded RNA sequencing (RNA-seq) data of 29 leukemia patients and 19 healthy donors from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, and RNA-seq data of 12 mouse hematopoietic cell populations obtained from our previous research were also used. We performed sequence alignment, identified RNA editing sites, and obtained characteristic editing sites related to normal hematopoietic development and abnormal editing sites associated with hematologic diseases. RESULTS: We established a new database, "REDH", represents RNA editome in hematopoietic differentiation and malignancy. REDH is a curated database of associations between RNA editome and hematopoiesis. REDH integrates 30,796 editing sites from 12 murine adult hematopoietic cell populations and systematically characterizes more than 400,000 edited events in malignant hematopoietic samples from 48 cohorts (human). Through the Differentiation, Disease, Enrichment, and knowledge modules, each A-to-I editing site is systematically integrated, including its distribution throughout the genome, its clinical information (human sample), and functional editing sites under physiological and pathological conditions. Furthermore, REDH compares the similarities and differences of editing sites between different hematologic malignancies and healthy control. CONCLUSIONS: REDH is accessible at http://www.redhdatabase.com/ . This user-friendly database would aid in understanding the mechanisms of RNA editing in hematopoietic differentiation and malignancies. It provides a set of data related to the maintenance of hematopoietic homeostasis and identifying potential therapeutic targets in malignancies.


Assuntos
Neoplasias , RNA , Humanos , Animais , Camundongos , Edição de RNA/genética , Adenosina/genética , Adenosina/metabolismo , Análise de Sequência de RNA
12.
Pigment Cell Melanoma Res ; 36(6): 588-593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819763

RESUMO

The Society for Melanoma Research (SMR) was created 20 years ago and has unequivocally contributed to the vast progress of the field, particularly for the treatment of melanoma patients with metastatic disease by facilitating synergistic collaborations between clinicians, researchers at the bench, and industry. In commemoration of the 20th anniversary of the first SMR International Congress (held in 2003 in Philadelphia), we look to the future by highlighting the perspectives of the next generation of rising stars, medical, and graduate students across six continents.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Melanoma/patologia
13.
Adv Sci (Weinh) ; 10(33): e2203987, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37849233

RESUMO

Albeit the majority of eukaryotic genomes can be pervasively transcribed to a diverse population of lncRNAs and various subtypes of lncRNA are discovered. However, the genome-wide study of miRNA-derived lncRNAs is still lacking. Here, it is reported that over 800 miRNA gene-originated lncRNAs (molncRNAs) are generated from miRNA loci. One of them, molnc-301b from miR-301b and miR-130b, functions as an "RNA decoy" to facilitate dissociation of the chromatin remodeling protein SMARCA5 from chromatin and thereby sequester transcription and mRNA translation. Specifically, molnc-301b attenuates erythropoiesis by mitigating the transcription of erythropoietic and translation-associated genes, such as GATA1 and FOS. In addition, a useful and powerful CRISPR screen platform to characterize the biological functions of molncRNAs at large-scale and single-cell levels is established and 29 functional molncRNAs in hematopoietic cells are identified. Collectively, the focus is on miRNA-derived lncRNAs, deciphering their landscape during normal hematopoiesis, and comprehensively evaluating their potential roles.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Transcrição/genética
15.
BMC Med ; 21(1): 294, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553571

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor, and its diagnosis is still a challenge. This study aimed to identify a novel bile marker for CCA diagnosis based on proteomics and establish a diagnostic model with deep learning. METHODS: A total of 644 subjects (236 CCA and 408 non-CCA) from two independent centers were divided into discovery, cross-validation, and external validation sets for the study. Candidate bile markers were identified by three proteomics data and validated on 635 clinical humoral specimens and 121 tissue specimens. A diagnostic multi-analyte model containing bile and serum biomarkers was established in cross-validation set by deep learning and validated in an independent external cohort. RESULTS: The results of proteomics analysis and clinical specimen verification showed that bile clusterin (CLU) was significantly higher in CCA body fluids. Based on 376 subjects in the cross-validation set, ROC analysis indicated that bile CLU had a satisfactory diagnostic power (AUC: 0.852, sensitivity: 73.6%, specificity: 90.1%). Building on bile CLU and 63 serum markers, deep learning established a diagnostic model incorporating seven factors (CLU, CA19-9, IBIL, GGT, LDL-C, TG, and TBA), which showed a high diagnostic utility (AUC: 0.947, sensitivity: 90.3%, specificity: 84.9%). External validation in an independent cohort (n = 259) resulted in a similar accuracy for the detection of CCA. Finally, for the convenience of operation, a user-friendly prediction platform was built online for CCA. CONCLUSIONS: This is the largest and most comprehensive study combining bile and serum biomarkers to differentiate CCA. This diagnostic model may potentially be used to detect CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Aprendizado Profundo , Humanos , Bile , Clusterina , Biomarcadores Tumorais , Neoplasias dos Ductos Biliares/diagnóstico , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia
16.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375414

RESUMO

Although the use of detergents in thermal proteome profiling (TPP) has become a common practice to identify membrane protein targets in complex biological samples, surprisingly, there is no proteome-wide investigation into the impacts of detergent introduction on the target identification performance of TPP. In this study, we assessed the target identification performance of TPP in the presence of a commonly used non-ionic detergent or a zwitterionic detergent using a pan-kinase inhibitor staurosporine, our results showed that the addition of either of these detergents significantly impaired the identification performance of TPP at the optimal temperature for soluble target protein identification. Further investigation showed that detergents destabilized the proteome and increased protein precipitation. By lowering the applied temperature point, the target identification performance of TPP with detergents is significantly improved and is comparable to that in the absence of detergents. Our findings provide valuable insight into how to select the appropriate temperature range when detergents are used in TPP. In addition, our results also suggest that the combination of detergent and heat may serve as a novel precipitation-inducing force that can be applied for target protein identification.


Assuntos
Antineoplásicos , Detergentes , Temperatura , Proteínas de Membrana , Temperatura Alta , Proteoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-37229818

RESUMO

Pirarubicin (THP), doxorubicin (DOX), cyclophosphamide (CTX), and vincristine (VCR) are widely used in the treatment of patients with non-Hodgkin's Lymphoma. Herein, a precise and sensitive method was developed for the determination of THP, DOX, CTX and VCR in human plasma by high-performance liquid-chromatography-tandem mass spectrometry (LC-MS/MS). Liquid-liquid extraction was applied to extract THP, DOX, CTX, VCR, and the internal standard (IS, Pioglitazone) in plasma. Agilent Eclipse XDB-C18 (3.0 mm × 100 mm) was utilized and chromatographic separation was obtained in eight minutes. Mobile phases were composed of methanol and buffer (10 mM ammonium formate containing 0.1% formic acid). The method was linear within the concentration range of 1-500 ng/mL for THP, 2-1000 ng/mL for DOX, 2.5-1250 ng/mL for CTX, and 3-1500 ng/mL for VCR. The intra- and inter-day precisions of QC samples were found to be below 9.31 and 13.66%, and accuracy ranged from -0.2 to 9.07%, respectively. THP, DOX, CTX, VCR and the internal standard were stable in several conditions. Finally, this method was successfully utilized to simultaneously determine THP, DOX, CTX and VCR in human plasma of 15 patients with non-Hodgkin's Lymphoma after intravenous administration. Finally, the method was successfully employed in the clinical determination of THP, DOX, CTX, and VCR in patients with non-Hodgkin lymphoma after administration of RCHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) regimens.


Assuntos
Linfoma não Hodgkin , Humanos , Espectrometria de Massas em Tandem/métodos , Linfoma não Hodgkin/química , Linfoma não Hodgkin/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/sangue , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/sangue , Doxorrubicina/uso terapêutico , Ciclofosfamida/sangue , Ciclofosfamida/uso terapêutico , Vincristina/sangue , Vincristina/uso terapêutico , Técnicas de Diluição do Indicador , Cromatografia Líquida de Alta Pressão/métodos
18.
Nat Prod Res ; 37(11): 1888-1891, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36089913

RESUMO

Camelina [Camelina sativa (L.) Crantz] seed has long been consumed as a source of food in Canada. But limited information is available concerning the systematical evaluation of the composition, content, and antioxidant activity of Camelina seed polyphenol extract (CSPE). Therefore, the aim of this study was to identify, quantify and evaluate the antioxidant activity of CSPE. The result showed that eight compositions were identified and determined by the UPLC-DAD-ESI-MS2 analysis. CSPE has potent free radical scavenging capacity. CSPE treatment significantly increased the activities of the antioxidant enzymes (superoxide dismutase and catalase) and glutathione content in a dose-dependent manner in RAW264.7 cells with oxidative injury and also reduced malondialdehyde content (P < 0.01). It may be concluded that CSPE has a strong antioxidant activity as depicted by the in vitro experiments and thus possesses the potential to be developed as food antioxidants or as an ingredient in functional foods.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/farmacologia , Antioxidantes/análise , Polifenóis/farmacologia , Polifenóis/análise , Extratos Vegetais/farmacologia , Sementes/química , Superóxido Dismutase
19.
Blood Sci ; 4(3): 103-115, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36518592

RESUMO

RNA-binding proteins (RBPs) are widely involved in the transcriptional and posttranscriptional regulation of multiple biological processes. The transcriptional regulatory ability of RBPs was indicated by the identification of chromatin-enriched RBPs (Che-RBPs). One of these proteins, KH-type splicing regulatory protein (KHSRP), is a multifunctional RBP that has been implicated in mRNA decay, alternative splicing, and miRNA biogenesis and plays an essential role in myeloid differentiation by facilitating the maturation of miR-129. In this study, we revealed that KHSRP regulates monocytic differentiation by regulating gene transcription and RNA splicing. KHSRP-occupied specific genomic sites in promoter and enhancer regions to regulate the expression of several hematopoietic genes through transcriptional activation and bound to pre-mRNA intronic regions to modulate alternative splicing during monocytic differentiation. Of note, KHSRP had co-regulatory effects at both the transcriptional and posttranscriptional levels on MOGOH and ADARB1. Taken together, our analyses revealed the dual DNA- and RNA-binding activities of KHSRP and have provided a paradigm to guide the analysis of other functional Che-RBPs in different biological systems.

20.
Curr Med Sci ; 42(5): 958-965, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36245030

RESUMO

OBJECTIVE: Acute myeloid leukemia (AML) is a highly heterogeneous and recurrent hematological malignancy. Despite the emergence of novel chemotherapy drugs, AML patients' complete remission (CR) remains unsatisfactory. Consequently, it is imperative to discover new therapeutic targets or medications to treat AML. Such epigenetic changes like DNA methylation and histone modification play vital roles in AML. Peptidylarginine deminase (PAD) is a protein family of histone demethylases, among which the PAD2 and PAD4 expression have been demonstrated to be elevated in AML patients, thus suggesting a potential role of PADs in the development or maintenance of AML and the potential for the identification of novel therapeutic targets. METHODS: AML cells were treated in vitro with the pan-PAD inhibitor BB-Cl-Amidine (BB-Cl-A). The AML cell lines were effectively induced into apoptosis by BB-Cl-A. However, the PAD4-specific inhibitor GSK484 did not. RESULTS: PAD2 played a significant role in AML. Furthermore, we found that BB-Cl-A could activate the endoplasmic reticulum (ER) stress response, as evidenced by an increase in phosphorylated PERK (p-PERK) and eIF2α (p-eIF2α). As a result of the ER stress activation, the BB-Cl-A effectively induced apoptosis in the AML cells. CONCLUSION: Our findings indicated that PAD2 plays a role in ER homeostasis maintenance and apoptosis prevention. Therefore, targeting PAD2 with BB-Cl-A could represent a novel therapeutic strategy for treating AML.


Assuntos
Leucemia Mieloide Aguda , Ornitina , Humanos , Histona Desmetilases , Leucemia Mieloide Aguda/tratamento farmacológico , Ornitina/farmacologia , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA