Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Q ; 43(1): 1-11, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807922

RESUMO

Bovine mastitis is one of the most serious and costly disease affecting dairy cattle production. The present study explored the inflammatory response and autoprotective mechanism of a novel specific high expression BMNCR (bovine mastitis related long non-coding RNA) in S. aureus induced mastitis by miR-145/CBFB axis in dairy cows from the perspective of molecular genetics. In bovine mammary epithelial cells, we preformed loss of function experiments to detect changes in cytokine, proliferation and apoptosis by qRT-PCR, western blot, flow cytometry and EdU staining. The results demonstrated that BMNCR significantly increased cell apoptosis, and inhibited cell proliferation. However, the secretion of IL-1α, IL-2, IL-6, IL-8 and IL-12 were enhanced after knock-down BMNCR. Bioinformatics analysis demonstrated that BMNCR could target 8 miRNAs, in-depth analyses indicated that BMNCR acts as a molecular sponge for bta-miR-145 and CBFB was one of 23 target gene of bta-miR-145 . The results of the present study demonstrated that the role of BMNCR in S. aureus induced mastitis can be mediated by sponge bta-miR-145 activating CBFB expression. BMNCR could be a potential target for mastitis diagnosis and therapy, which may enrich the theoretical research of therapeutic intervention, and further increase milk yield and improve milk quality.


Assuntos
Doenças dos Bovinos , Mastite Bovina , MicroRNAs , RNA Longo não Codificante , Feminino , Animais , Bovinos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mastite Bovina/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Células Epiteliais , Glândulas Mamárias Animais
2.
Epigenetics ; 18(1): 2231707, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37406176

RESUMO

Long noncoding RNAs have been identified as important regulators of gene expression and animal development. The expression of natural antisense transcripts (NATs) transcribed in the opposite direction to protein-coding genes is usually positively correlated with the expression of homologous sense genes and is the key factor for expression. Here, we identified a conserved noncoding antisense transcript, CFL1-AS1, that plays an important role in muscle growth and development. CFL1-AS1 overexpression and knockout vectors were constructed and transfected into 293T and C2C12 cells. CFL1-AS1 positively regulated CFL1 gene expression, and the expression of CFL2 was also downregulated when CFL1-AS1 was knocked down. CFL1-AS1 promoted cell proliferation, inhibited apoptosis and participated in autophagy. This study expands the research on NATs in cattle and lays a foundation for the study of the biological function of bovine CFL1 and its natural antisense chain transcript CFL1-AS1 in bovine skeletal muscle development. The discovery of this NAT can provide a reference for subsequent genetic breeding and data on the characteristics and functional mechanisms of NATs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Bovinos/genética , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metilação de DNA , Apoptose/genética , Clonagem Molecular , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , MicroRNAs/metabolismo
3.
Bioengineering (Basel) ; 9(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36550935

RESUMO

Meat quality and meat composition are not separated from the influences of animal genetic improvement systems; the growth and development of skeletal muscle are the primary factors in agricultural meat production and meat quality. Though the muscle-type cofilin (CFL2) gene has a crucial influence on skeletal muscle fibers and other related functions, the epigenetic modification mechanism of the CFL2 gene regulating meat quality remains elusive. After exploring the spatiotemporal expression data of CFL2 gene in a group of samples from fetal bovine, calf, and adult cattle, we found that the level of CFL2 gene in muscle tissues increased obviously with cattle age, whereas DNA methylation levels of CFL2 gene in muscle tissues decreased significantly along with cattle age by BSP and COBRA, although DNA methylation levels and mRNA expression levels basically showed an opposite trend. In cell experiments, we found that bta-miR-183 could suppress primary bovine myoblast differentiation by negatively regulated CFL2. In addition, we packaged recombinant adenovirus vectors for CFL2 gene knockout and overexpression and found that the CFL2 gene could promote the differentiation of primary bovine myoblasts by regulating marker genes MYOD, MYOG and MYH3. Therefore, CFL2 is an essential mediator for promoting myogenic differentiation by regulating myogenic marker genes in cattle myoblasts.

4.
J Food Biochem ; 46(12): e14376, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35945702

RESUMO

Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, ß-glucuronidase, ß-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.


Assuntos
Doença das Coronárias , Hesperidina , Liases , Humanos , Simulação de Acoplamento Molecular , Flavonoides
5.
Genes (Basel) ; 13(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627108

RESUMO

As the quality of beef products has received increasing attention, it is essential to explore the underlying transcriptional and epigenetic mechanisms of meat traits. Our project uses Qinchuan cattle as the research subject. First, we examined the spatiotemporal expression pattern of the CFL1 gene in a panel of fetal bovine, calf, and adult cattle samples. Then, we performed DNA methylation experiments of CFL1 on myogenesis and muscle maturation using the BSP amplification and COBRA sequencing techniques and found that high DNA methylation levels showed low expression levels. Next, we performed an assay between bta-miR-182 and the CFL1 gene and demonstrated that miR-182 could promote bovine primary myoblast differentiation by negatively regulated the expression of CFL1. Finally, we constructed an adenovirus overexpression and interference vector and found that CFL1 could suppress the differentiation of bovine primary myoblasts. In summary, our experiment comprehensively analyzes the epigenetic regulation mechanisms of the CFL1 gene in the development and differentiation of bovine primary myoblasts. This has far-reaching significance for improving the meat production and meat quality of Qinchuan cattle. This can provide reliable data support and a theoretical research basis for the rapid and efficient breeding selection of local yellow cattle and the genetic improvement of meat quality.


Assuntos
Epigênese Genética , MicroRNAs , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Bovinos , Epigênese Genética/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA