Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(5): e10567, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693063

RESUMO

Low-flow removal of refractory ascites is critical to treating cirrhosis and digestive system tumor, and thus, commercial ascites pump emerged lately. The rigid structure of clinically available pumps rises complication rate and lack of flow rate monitoring hinders early warning of abnormalities. Herein, a soft artificial system was proposed inspired by lymph for interactive ascites transfer with great biocompatibility. The implantable system is composed of pump cavity, valves and tubes, which are soft and flexible made by silica gel. Therefore, the system possesses similar modulus to tissues and can naturally fit surrounding tissues. The cavity with magnetic tablet embedded is driven by extracorporeal magnetic field. Subsequently, the system can drain ascites with a top speed of 23 mL min-1, much higher than that of natural lymphatic system and state-of-art devices. Moreover, integrated flexible sensors enable wireless, real-time flow rate monitoring, serving as proof of treatment adjustment, detection and locating of malfunction at early stage. The liver function of experimental objects was improved, and no severe complications occurred for 4 weeks, which proved its safety and benefit to treatment. This artificial lymphatic system can serve as a bridge to recovery and pave the way for further clinical research.

2.
IEEE J Biomed Health Inform ; 26(7): 2951-2962, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35171784

RESUMO

Bowel sounds (BSs) have important clinical value in the auxiliary diagnosis of digestive diseases, but due to the inconvenience of long-term monitoring and too much interference from environmental noise, they have not been well studied. Most of the current electronic stethoscopes are hard and bulky without the function of noise reduction, and their application for long-term wearable monitoring of BS in noisy clinical environments is very limited. In this paper, a flexible dual-channel digital auscultation patch with active noise reduction is designed and developed, which is wireless, wearable, and conformably attached to abdominal skin to record BS more accurately. The ambient noise can be greatly reduced through active noise reduction based on the adaptive filter. At the same time, some nonstationary noises appearing intermittently (e.g., frictional noise) can also be removed from BS by the cross validation of multichannel simultaneous acquisition. Then, two kinds of typical BS signals are taken as examples, and the feature parameters of the BS in the time domain and frequency domain are extracted through the time-frequency analysis algorithm. Furthermore, based on the short-term energy ratio between the four channels of dual patches, the two-dimensional localization of BS on the abdomen mapping plane is realized. Finally, the continuous wearable monitoring of BS for patients with postoperative ileus (POI) in the noisy ward from pre-operation (POD0) to postoperative Day 7 (POD7) was carried out. The obtained change curve of the occurrence frequency of BS provides guidance for doctors to choose a reasonable feeding time for patients after surgery and accelerate their recovery. Therefore, flexible dual-channel digital auscultation patches with active noise reduction will have promising applications in the clinical auxiliary diagnosis of digestive diseases.


Assuntos
Auscultação , Ruído , Algoritmos , Humanos
3.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215747

RESUMO

Packers based on shape memory polymers (SMPs) are an emerging technology that have the advantages of compact structure, easy manufacture, and adaptability to complex wells. This paper proposes a finite element model to simulate the setting process and mechanical response of an SMP packer. The investigated material is an epoxy-based thermal responsive SMP, whose relaxation modulus and thermal expansion coefficient were measured at different temperatures. Based on the experimental data, the model describes the viscoelastic behavior of the SMP using the generalized Maxwell model. The results show that the SMP packer could provide sufficient contact stress under downhole conditions, even after the stress was relaxed. A further parametric study revealed that the most significant factor in sealing effects is the wellbore pressure, followed by the interference between the packer and the annular, the seal length, the pre-compression, and the setting temperature. High downhole pressures require more significant contact stress and increase the risk of slip between the packer and casing wall by promoting shear stress. Increasing the seal length and interference enhances the contact stress and mitigates the shear stress to improve the seal performance. Pre-compression and setting temperatures are minor factors that have little influence on sealability.

4.
Sci Adv ; 7(44): eabi9283, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705515

RESUMO

Thrombosis and restenosis after vascular reconstruction procedures may cause complications such as stroke, but a clinical means to continuously monitor vascular conditions is lacking. Conventional ultrasound probes are rigid, particularly for postoperative patients with fragile skin. Techniques based on photoplethysmography or thermal analysis provide only relative changes in flow volume and have a shallow detection depth. Here, we introduce a flexible Doppler ultrasound device for the continuous monitoring of the absolute velocity of blood flow in deeply embedded arteries based on the Doppler effect. The device is thin (1 mm), lightweight (0.75 g), and skin conforming. When the dual-beam Doppler method is used, the influence of the Doppler angle on the velocity measurement is avoided. Experimental studies on ultrasound phantoms and human subjects demonstrate accurate measurement of the flow velocity. The wearable Doppler device has the potential to enhance the quality of care of patients after reconstruction surgery.

5.
ACS Appl Mater Interfaces ; 13(18): 21067-21075, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908774

RESUMO

Nowadays, controllable drug release is a vitally important strategy for cancer treatment and usually realized using implanting biocompatible devices. However, these devices need to be removed by another surgery after the function fails, which brings the risks of inflammation or potential death. In this article, a biodegradable flexible electronic device with controllable drug (paclitaxel) release was proposed for cancer treatment. The device is powered by an external alternating magnetic field to generate internal resistance heat and promote drug release loaded on the substrate. Moreover, the device temperature can even reach to 65 °C, which was sufficient for controllable drug release. This device also has similar mechanical properties to human tissues and can autonomously degrade due to the structure design of the circuit and degradable compositions. Finally, it is confirmed that the device has a good inhibitory effect on the proliferation of breast cancer cells (MCF-7) and could be completely degraded in vitro. Thus, its great biodegradability and conformity can relieve patients of second operation, and the device proposed in this paper provides a promising solution to complete conquest of cancer in situ.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Materiais Biocompatíveis , Preparações de Ação Retardada , Eletrônica , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Células MCF-7 , Paclitaxel/uso terapêutico
6.
ACS Appl Mater Interfaces ; 11(36): 33370-33379, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408310

RESUMO

Flexible pressure sensors have attracted considerable attention because of their potential applications in healthcare monitoring and human-machine interactions. However, the complicated fabrication process and the cos of sensing materials limit their widespread applications in practice. Herein, a flexible pressure sensor with outstanding performances is presented through an extremely simple and cost-efficient fabrication process. The sensing materials of the sensor are based on low-cost carbon black (CB)@airlaid paper (AP) composites, which are just prepared by drop-casting CB solutions onto APs. Through simply stacking multiple CB@APs with an irregular surface and a fiber-network structure, the obtained pressure sensor demonstrates an ultrahigh sensitivity of 51.23 kPa-1 and an ultralow detection limit of 1 Pa. Additionally, the sensor exhibits fast response time, wide working range, good stability, as well as excellent flexibility and biocompatibility. All the comprehensive and superior performances endow the sensor with abilities to precisely detect weak air flow, wrist pulse, phonation, and wrist bending in real time. In addition, an array electronic skin integrated with multiple CB@AP sensors has been designed to identify spatial pressure distribution and pressure magnitude. Through a biomimetic structure inspired by blooming flowers, a sensor with the open-petal structure has been designed to recognize the wind direction. Therefore, our study, which demonstrates a flexible pressure sensor with low cost, simple preparation, and superior performances, will open up for the exploration of cost-efficient pressure sensors in wearable devices.


Assuntos
Custos e Análise de Custo , Papel , Pressão , Fuligem/análise , Dispositivos Eletrônicos Vestíveis/economia , Maleabilidade
7.
Nat Biomed Eng ; 3(3): 194-205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948811

RESUMO

Skin-interfaced medical devices are critically important for diagnosing disease, monitoring physiological health and establishing control interfaces with prosthetics, computer systems and wearable robotic devices. Skin-like epidermal electronic technologies can support these use cases in soft and ultrathin materials that conformally interface with the skin in a manner that is mechanically and thermally imperceptible. Nevertheless, schemes so far have limited the overall sizes of these devices to less than a few square centimetres. Here, we present materials, device structures, handling and mounting methods, and manufacturing approaches that enable epidermal electronic interfaces that are orders of magnitude larger than previously realized. As a proof-of-concept, we demonstrate devices for electrophysiological recordings that enable coverage of the full scalp and the full circumference of the forearm. Filamentary conductive architectures in open-network designs minimize radio frequency-induced eddy currents, forming the basis for structural and functional compatibility with magnetic resonance imaging. We demonstrate the use of the large-area interfaces for the multifunctional control of a transhumeral prosthesis by patients who have undergone targeted muscle-reinnervation surgery, in long-term electroencephalography, and in simultaneous electroencephalography and structural and functional magnetic resonance imaging.


Assuntos
Cognição , Epiderme/fisiologia , Imageamento por Ressonância Magnética , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Adulto , Eletrocardiografia , Eletrodos , Eletroencefalografia , Eletromiografia , Humanos , Masculino , Robótica
8.
Adv Mater ; 30(32): e1801584, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29944186

RESUMO

Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies.


Assuntos
Técnicas Biossensoriais , Animais , Camundongos , Óptica e Fotônica , Fótons , Polímeros , Silício
9.
Microsyst Nanoeng ; 2: 16052, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057838

RESUMO

Epidermal electronic systems feature physical properties that approximate those of the skin, to enable intimate, long-lived skin interfaces for physiological measurements, human-machine interfaces and other applications that cannot be addressed by wearable hardware that is commercially available today. A primary challenge is power supply; the physical bulk, large mass and high mechanical modulus associated with conventional battery technologies can hinder efforts to achieve epidermal characteristics, and near-field power transfer schemes offer only a limited operating distance. Here we introduce an epidermal, far-field radio frequency (RF) power harvester built using a modularized collection of ultrathin antennas, rectifiers and voltage doublers. These components, separately fabricated and tested, can be integrated together via methods involving soft contact lamination. Systematic studies of the individual components and the overall performance in various dielectric environments highlight the key operational features of these systems and strategies for their optimization. The results suggest robust capabilities for battery-free RF power, with relevance to many emerging epidermal technologies.

10.
NPG Asia Mater ; 72015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27175221

RESUMO

On-demand, localized release of drugs in precisely controlled, patient-specific time sequences represents an ideal scenario for pharmacological treatment of various forms of hormone imbalances, malignant cancers, osteoporosis, diabetic conditions and others. We present a wirelessly operated, implantable drug delivery system that offers such capabilities in a form that undergoes complete bioresorption after an engineered functional period, thereby obviating the need for surgical extraction. The device architecture combines thermally actuated lipid membranes embedded with multiple types of drugs, configured in spatial arrays and co-located with individually addressable, wireless elements for Joule heating. The result provides the ability for externally triggered, precision dosage of drugs with high levels of control and negligible unwanted leakage, all without the need for surgical removal. In vitro and in vivo investigations reveal all of the underlying operational and materials aspects, as well as the basic efficacy and biocompatibility of these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA