RESUMO
The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.
Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , TupaiidaeRESUMO
Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Microambiente Celular/imunologia , Pulmão/imunologia , Receptores CXCR3/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Interferon-alfa/imunologia , Interleucina-6/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , MasculinoRESUMO
In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.
Assuntos
Animais , Proteínas de Bactérias/genética , Clostridium perfringens/genética , Análise de Sequência de RNA/métodos , Genes MDR , Farmacorresistência Bacteriana Múltipla/genética , Espectrometria de Massas/métodos , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional/métodos , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Clostridium perfringens/classificação , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/metabolismo , DNA Complementar , Proteoma/genética , Transcriptoma/genética , Ontologia GenéticaRESUMO
Tree shrews have a close relationship to primates and have many advantages over rodents in biomedical research. However, the lack of gene manipulation methods has hindered the wider use of this animal. Spermatogonial stem cells (SSCs) have been successfully expanded in culture to permit sophisticated gene editing in the mouse and rat. Here, we describe a culture system for the long-term expansion of tree shrew SSCs without the loss of stem cell properties. In our study, thymus cell antigen 1 was used to enrich tree shrew SSCs. RNA-sequencing analysis revealed that the Wnt/ß-catenin signaling pathway was active in undifferentiated SSCs, but was downregulated upon the initiation of SSC differentiation. Exposure of tree shrew primary SSCs to recombinant Wnt3a protein during the initial passages of culture enhanced the survival of SSCs. Use of tree shrew Sertoli cells, but not mouse embryonic fibroblasts, as feeder was found to be necessary for tree shrew SSC proliferation, leading to a robust cell expansion and long-term culture. The expanded tree shrew SSCs were transfected with enhanced green fluorescent protein (EGFP)-expressing lentiviral vectors. After transplantation into sterilized adult male tree shrew's testes, the EGFP-tagged SSCs were able to restore spermatogenesis and successfully generate transgenic offspring. Moreover, these SSCs were suitable for the CRISPR/Cas9-mediated gene modification. The development of a culture system to expand tree shrew SSCs in combination with a gene editing approach paves the way for precise genome manipulation using the tree shrew.
Assuntos
Técnicas de Cultura de Células/métodos , Espermatogônias/citologia , Células-Tronco/citologia , Tupaiidae/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Biomarcadores/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Edição de Genes , Proteínas de Fluorescência Verde/metabolismo , Masculino , Análise de Sequência de RNA , Espermatogênese , Antígenos Thy-1/metabolismo , Via de Sinalização WntRESUMO
OBJECTIVE: To explore the effect of lysine-coated oxide magnetic nanoparticles (Lys@MNPs) on viability and apoptosis of A549 lung cancer cells. METHODS: Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Zeta potentiometric analyzer were employed to characterize Lys@MNPs. Then Lys@MNPs and lung cancer A549 cells were co-cultured to study the effect of Lys@MNPs on cell viability and apoptosis. The pathway of Lys@MNPs entering A549 cells was detected by TEM and cell imaging by 1.5 T MRI. RESULTS: Lys@MNPs were 10.2 nm in grain diameter, characterized by small size, positive charge, and superparamagnetism. Under low-dose concentration of Lys@MNPs (<40 µg/mL), the survival rate of A549 cells was decreased but remained higher than 95% while under high-dose concentration (100 µg/mL), the survival ratewas still higher than 80%, which suggested Lys@MNPs had limited influence on the viability of A549 cells, with good biocompatibility and and no induction of apoptosis. Moreover, high affinity for cytomembranes, was demonstrated presenting good imaging effects. CONCLUSION: Lys@MNPs can be regarded as a good MRI negative contrast agents, with promising prospects in biomedicine.