Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 155: 113706, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116250

RESUMO

Ivermectin has been proposed as a potential anti-inflammatory drug in addition to its antiparasitic activity. Here we investigated the potential role of ivermectin in the pathogenesis of acute lung injury (ALI) using the lipopolysaccharide (LPS)- or bleomycin (BLM)-induced mice models. Male C57BL/6 mice were given ivermectin orally every day for the remainder of the experiment at doses of 1 or 2 mg/kg after 24 h of LPS or BLM treatment. Ivermectin reversed severe lung injury caused by LPS or BLM challenge, including mortality, changes in diffuse ground-glass and consolidation shadows on lung CT imaging, lung histopathological scores, lung wet/dry ratio, and protein content in the bronchoalveolar lavage fluid (BALF). Furthermore, ivermectin also reduced total lung BALF inflammatory cells, infiltrating neutrophils, myeloperoxidase activity, and plasma TNF-α and IL-6 levels in mice treated with LPS or BLM. Finally, the mechanism study showed that LPS or BLM administration increased JNK, Erk1/2, and p38 MAPK phosphorylation while decreasing IκBα expression, an inhibitor of NF-κB. However, ivermectin increased IκBα expression but blocked elevated phosphorylated JNK and p38 MAPK, not Erk1/2, in both ALI mice. These findings suggested that ivermectin may alleviate ALI caused by LPS or BLM in mice, partly via lowering the inflammatory response, which is mediated at least by the inhibition of MAPK and NF-κB signaling. Collectively, ivermectin might be used to treat acute lung injury/acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Masculino , Animais , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Ivermectina/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Peroxidase/metabolismo , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , Pulmão/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Bleomicina/uso terapêutico , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico
2.
Front Nutr ; 9: 850689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711535

RESUMO

Fructose is a commonly used food additive and has many adverse effects on human health, but it is unclear whether fructose impacts pulmonary fibrosis. TGF-ß1, a potent fibrotic inducer, is produced as latent complexes by various cells, including alveolar epithelial cells, macrophages, and fibroblasts, and must be activated by many factors such as reactive oxygen species (ROS). This study explored the impact of fructose on pulmonary fibrotic phenotype and epithelial-mesenchymal transition (EMT) using lung epithelial cells (A549 or BEAS-2B) and the underlying mechanisms. Fructose promoted the cell viability of lung epithelial cells, while N-Acetyl-l-cysteine (NAC) inhibited such. Co-treatment of fructose and latent TGF-ß1 could induce the fibrosis phenotype and the epithelial-mesenchymal transition (EMT)-related protein expression, increasing lung epithelial cell migration and invasion. Mechanism analysis shows that fructose dose-dependently promoted the production of total and mitochondrial ROS in A549 cells, while NAC eliminated this promotion. Notably, post-administration with NAC or SB431542 (a potent TGF-ß type I receptor inhibitor) inhibited fibrosis phenotype and EMT process of lung epithelial cells co-treated with fructose and latent TGF-ß1. Finally, the fibrosis phenotype and EMT-related protein expression of lung epithelial cells were mediated by the ROS-activated latent TGF-ß1/Smad3 signal. This study revealed that high fructose promoted the fibrotic phenotype of human lung epithelial cells by up-regulating oxidative stress, which enabled the latent form of TGF-ß1 into activated TGF-ß1, which provides help and reference for the diet adjustment of healthy people and patients with fibrosis.

3.
Front Pharmacol ; 12: 717529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483925

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide and still lacks effective therapy. Ivermectin, an antiparasitic drug, has been shown to possess anti-inflammation, anti-virus, and antitumor properties. However, whether ivermectin affects CRC is still unclear. The objective of this study was to evaluate the influence of ivermectin on CRC using CRC cell lines SW480 and SW1116. We used CCK-8 assay to determine the cell viability, used an optical microscope to measure cell morphology, used Annexin V-FITC/7-AAD kit to determine cell apoptosis, used Caspase 3/7 Activity Apoptosis Assay Kit to evaluate Caspase 3/7 activity, used Western blot to determine apoptosis-associated protein expression, and used flow cytometry and fluorescence microscope to determine the reactive oxygen species (ROS) levels and cell cycle. The results demonstrated that ivermectin dose-dependently inhibited colorectal cancer SW480 and SW1116 cell growth, followed by promoting cell apoptosis and increasing Caspase-3/7 activity. Besides, ivermectin upregulated the expression of proapoptotic proteins Bax and cleaved PARP and downregulated antiapoptotic protein Bcl-2. Mechanism analysis showed that ivermectin promoted both total and mitochondrial ROS production in a dose-dependent manner, which could be eliminated by administering N-acetyl-l-cysteine (NAC) in CRC cells. Following NAC treatment, the inhibition of cell growth induced by ivermectin was reversed. Finally, ivermectin at low doses (2.5 and 5 µM) induced CRC cell arrest. Overall, ivermectin suppressed cell proliferation by promoting ROS-mediated mitochondrial apoptosis pathway and inducing S phase arrest in CRC cells, suggesting that ivermectin might be a new potential anticancer drug therapy for human colorectal cancer and other cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA