Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microbiol Spectr ; 12(6): e0046524, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700327

RESUMO

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacina Antivariólica , Varíola , Vacinas de Subunidades Antigênicas , Vírus da Varíola , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Humanos , Vacina Antivariólica/imunologia , Vírus da Varíola/imunologia , Vírus da Varíola/genética , Varíola/prevenção & controle , Varíola/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/química , Imunoinformática
2.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802814

RESUMO

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Macrófagos , Fagocitose , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Macrófagos/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Cisplatino/farmacologia , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Eferocitose
3.
J Cancer ; 15(8): 2424-2430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495482

RESUMO

Cofilin (CFL1) is one critical member of the actin deploy family (ADF). Overexpression of CFL1 is associated with aggressive features and poor prognosis in malignancies. We evaluated the expression of CFL1 in patients with chronic myeloid leukemia in the chronic phase (CML-CP), acute myelocytic leukemia (AML) and healthy controls. The role of CFL1 in imatinib therapy was also investigated using cell line. We found that the expression of CFL1 was lower in CML patients than that in healthy controls, and was significantly upregulated after imatinib therapy (p<0.05). CML patients with lower CFL1 achieved higher Major molecular response (MMR) rate after 6 months of imatinib therapy (p<0.05). Cofilin, P-cofilin and F-actin, especially branched F-actin were all upregulated after imatinib therapy. The lower CFL1 expression before treatment may predicts a better response to imatinib. Imatinib affects F-actin remodeling in CML patients by regulating CFL1 expression and activity.

4.
Small ; 20(24): e2306389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168513

RESUMO

In view of the increased levels of reactive oxygen species (ROS) that disturb the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), the repair of diabetic bone defects remains a great challenge. Herein, a factor-free hydrogel is reported with ROS scavenging and responsive degradation properties for enhanced diabetic bone healing. These hydrogels contain ROS-cleavable thioketal (TK) linkers and ultraviolet (UV)-responsive norbornene (NB) groups conjugated with 8-arm PEG macromers, which are formed via UV crosslinking-mediated gelation. Upon reacting with high levels of ROS in the bone defect microenvironment, ROS-cleavable TK linkers are destroyed, allowing the responsive degradation of hydrogels, which promotes the migration of BMSCs. Moreover, ROS levels are reduced through hydrogel-mediated ROS scavenging to reverse BMSC differentiation from adipogenic to osteogenic phenotype. As such, a favorable microenvironment is created after simultaneous ROS scavenging and hydrogel degradation, leading to the effective repair of bone defects in diabetic mouse models, even without the addition of growth factors. Thus, this study presents a responsive hydrogel platform that regulates ROS scavenging and stromal degradation in bone engineering.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Camundongos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Cicatrização/efeitos dos fármacos , Osso e Ossos , Masculino
5.
Mater Horiz ; 11(6): 1465-1483, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38221872

RESUMO

Osteoarthritis (OA) is a common joint disease known for cartilage degeneration, leading to a substantial burden on individuals and society due to its high disability rate. However, current clinical treatments for cartilage defects remain unsatisfactory due to the unclear mechanisms underlying cartilage regeneration. Tissue engineering hydrogels have emerged as an attractive approach in cartilage repair. Recent research studies have indicated that stem cells can sense the mechanical strength of hydrogels, thereby regulating their differentiation fate. In this study, we present the groundbreaking construction of dual-network DNA-silk fibroin (SF) hydrogels with controllable surface rigidity. The supramolecular networks, formed through DNA base-pairing, induce the development of ß-sheet structures by constraining and aggregating SF molecules. Subsequently, SF was cross-linked via horseradish peroxidase (HRP)-mediated enzyme reactions to form the second network. Experimental results demonstrated a positive correlation between the surface rigidity of dual-network DNA-SF hydrogels and the DNA content. Interestingly, it was observed that dual-network DNA-SF hydrogels with moderate surface rigidity exhibited the highest effectiveness in facilitating the migration of bone marrow mesenchymal stem cells (BMSCs) and their chondrogenic differentiation. Transcriptome sequencing further confirmed that dual-network DNA-SF hydrogels primarily enhanced chondrogenic differentiation of BMSCs by upregulating the Wnt and TGF-ß signaling pathways while accelerating collagen II synthesis. Furthermore, in vivo studies revealed that dual-network DNA-SF hydrogels with moderate surface rigidity significantly accelerated cartilage regeneration. In summary, the dual-network DNA-SF hydrogels represent a promising and novel therapeutic strategy for cartilage regeneration.


Assuntos
Doenças das Cartilagens , Fibroínas , Humanos , Fibroínas/química , Hidrogéis , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Diferenciação Celular/genética
6.
iScience ; 27(1): 108545, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213621

RESUMO

Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.

7.
Aging (Albany NY) ; 15(22): 13486-13503, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38032290

RESUMO

Ferroptosis induction through the suppression of glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2 (AIFM2) has proven to be an effective approach in eliminating chemotherapy-resistant cells of various types. However, a comprehensive understanding of the roles of GPX4 and AIFM2 in acute myeloid leukemia (AML) has not yet been achieved. Using cBioPortal, DepMap, GEPIA, Metascape, and ONCOMINE, we compared the transcriptional expression, survival data, gene mutation, methylation, and network analyses of GPX4- and AIFM2-associated signaling pathways in AML. The results revealed that high expression levels of GPX4 and AIFM2 are associated with an adverse prognosis for AML patients. Overexpression of AIFM2 correlated with elevated mutation frequencies in NPM1 and DNMT3A. GPX4 upregulation modulated the following pathways: GO:0045333, cellular respiration; R-HSA-5389840, mitochondrial translation elongation; GO:0009060, aerobic respiration; R-HSA-9609507, protein localization; and R-HSA-8953854, metabolism of RNA. On the other hand, the overexpression of AIFM2 influenced the following processes: GO:0048704, embryonic skeletal system morphogenesis; GO:0021546, rhombomere development; GO:0009954, proximal/distal pattern formation; and GO:0048732, gland development. This study identifies the high expression of GPX4 and AIFM2 as novel biomarkers predicting a poor prognosis for AML patients. Furthermore, ferroptosis induction may improve the stratified treatment of AML.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Ferroptose/genética , Leucemia Mieloide Aguda/genética , Prognóstico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Mutação
8.
Mol Carcinog ; 62(10): 1546-1562, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493101

RESUMO

Circular RNAs (circRNAs), a type of endogenous noncoding RNA (ncRNA), exert vital roles in leukemia progression and are promising prognostic factors. Here, we report a novel circRNA, circSLC25A13 (hsa_circ_0081188), which was increased in acute myeloid leukemia (AML) patients with poor overall survival (OS) comparing to patients with good prognosis. Knockdown of circSLC25A13 in AML cells inhibited proliferation and increased cell apoptosis in vitro and in vivo. Enhanced circSLC25A13 expression promoted the survival of AML cells. Mechanistically, circSLC25A13 played as a microRNA sponge of miR-616-3p, which inhibited the expression of adenylate cyclase 2 (ADCY2). Downregulation of miR-616-3p and overexpression of ADCY2 partially rescued circSLC25A13 deficient induced cell growth arrest. In summary, through competitive absorption of miR-616-3p and thereby upregulating ADCY2 expression, circSLC25A13 promoted AML progression. Moreover, circSLC25A13 may represent a potential novel biomarker for the prognosis of AML and offer a potential therapeutic target for AML treatment.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética
9.
Front Med ; 17(4): 685-698, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37131085

RESUMO

Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/ß-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Antineoplásicos/uso terapêutico , Apoptose , beta Catenina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Lipoilação , Prognóstico , Via de Sinalização Wnt
10.
Br J Haematol ; 202(3): 566-577, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231991

RESUMO

Glutamine metabolic reprogramming in acute myeloid leukaemia (AML) cells contributes to the decreased sensitivity to antileukemic drugs. Leukaemic cells, but not their myeloid counterparts, largely depend on glutamine. Glutamate dehydrogenase 1 (GDH1) is a regulation enzyme in glutaminolysis. However, its role in AML remains unknown. Here, we reported that GDH1 was highly expressed in AML: high GDH1 was one of the independent negative prognostic factors in AML cohort. The dependence of leukaemic cells on GDH1 was proved both in vitro and in vivo. High GDH1 promoted cell proliferation and reduced survival time of leukaemic mice. Targeting GDH1 eliminated the blast cells and delayed AML progression. Mechanistically, GDH1 knockdown inhibited glutamine uptake by downregulating SLC1A5. Moreover, GDH1 invalidation also inhibited SLC3A2 and abrogated the cystine-glutamate antiporter system Xc- . The reduced cystine and glutamine disrupted the synthesis of glutathione (GSH) and led to the dysfunction of glutathione peroxidase-4 (GPX4), which maintains the lipid peroxidation homeostasis by using GSH as a co-factor. Collectively, triggering ferroptosis in AML cells in a GSH depletion manner, GDH1 inhibition was synthetically lethal with the chemotherapy drug cytarabine. Ferroptosis induced by inhibiting GDH1 provides an actionable therapeutic opportunity and a unique target for synthetic lethality to facilitate the elimination of malignant AML cells.


Assuntos
Glutamato Desidrogenase , Leucemia Mieloide Aguda , Camundongos , Animais , Glutamina/metabolismo , Cistina , Citarabina , Glutationa/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 999154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440200

RESUMO

Objective: To explore the effect of maternal body mass index (BMI) on steroid hormone profiles in women with gestational diabetes mellitus (GDM) and those with normal glucose tolerance (NGT). Methods: We enrolled 79 women with NGT and 80 women with GDM who had a gestational age of 24-28 weeks. The participants were grouped according to their BMI. We quantified 11 steroid hormones profiles by liquid chromatography-tandem mass spectrometry and calculated the product-to-precursor ratios in the steroidogenic pathway. Results: Women with GDM and BMI<25kg/m2 showed higher concentrations of dehydroepiandrosterone (DHEA) (p<0.001), testosterone (T) (p=0.020), estrone (E1) (p=0.010) and estradiol (E2) (p=0.040) and lower Matsuda index and HOMA-ß than women with NGT and BMI<25kg/m2. In women with GDM, concentrations of E1 (p=0.006) and E2 (p=0.009) declined, accompanied by reduced E2/T (p=0.008) and E1/androstenedione (A4) (p=0.010) in the BMI>25 kg/m2 group, when compared to that in the BMI<25 kg/m2 group. The values of E2/T and E1/A4 were used to evaluate the cytochrome P450 aromatase enzyme activity in the steroidogenic pathway. Both aromatase activities negatively correlated with the maternal BMI and positively correlated with the Matsuda index in women with GDM. Conclusions: NGT women and GDM women with normal weight presented with different steroid hormone profiles. Steroidogenic pathway profiling of sex hormones synthesis showed a significant increase in the production of DHEA, T, E1, and E2 in GDM women with normal weight. Additionally, the alteration of steroid hormone metabolism was related to maternal BMI in women with GDM, and GDM women with overweight showed reduced estrogen production and decreased insulin sensitivity compared with GDM women with normal weight.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Lactente , Diabetes Gestacional/metabolismo , Índice de Massa Corporal , Aromatase , Insulina , Estradiol , Desidroepiandrosterona
12.
Thromb Haemost ; 121(2): 192-205, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32961571

RESUMO

Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbß3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbß3 outside-in signaling.


Assuntos
Adenina/análogos & derivados , Plaquetas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Trombopoese/efeitos dos fármacos , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Plaquetas/citologia , Linhagem Celular , Humanos , Megacariócitos/citologia , Camundongos Endogâmicos C57BL
13.
Oncotarget ; 10(61): 6641-6642, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31762943

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.14463.].

14.
J Hematol Oncol ; 12(1): 26, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845955

RESUMO

Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbß3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbß3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbß3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbß3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbß3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbß3 in particular. Integrin αIIbß3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbß3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbß3 and its signaling pathways.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Abciximab/farmacologia , Sequência de Aminoácidos , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Eptifibatida/farmacologia , Humanos , Terapia de Alvo Molecular , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/agonistas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Transdução de Sinais , Tirofibana/farmacologia
15.
EBioMedicine ; 38: 47-56, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30472087

RESUMO

BACKGROUND: PARP-1 plays a critical role in DNA damage repair and contributes to progression of cancer. To explore the role of PARP-1 in acute myeloid leukemia (AML), we analyzed the expression of PARP-1 in AML and its relation to the clinical prognosis. Then, we investigated the efficacy and mechanism of PARP inhibitor BMN673 (Talazoparib) combined with NL101, a novel SAHA-bendamustine hybrid in vitro and in vivo. METHODS: The expression of PARP-1 in 339 cytogenetically normal AML (CN-AML) cases was evaluated using RT-PCR. According to the expression of PARP-1, the clinical characteristics and prognosis of the patients were grouped and compared. The combination effects of BMN673 and NL101 were studied in AML cells and B-NSG mice xenograft model of MV4-11. FINDINGS: We found patients in high PARP-1 expression group had higher levels of blast cells in bone marrow (P = .003) and white blood cells (WBC) in peripheral blood (P = .008), and were associated with a more frequent FLT3-ITD mutation (28.2% vs 17.3%, P = .031). The overall survival (OS) and event free survival (EFS) of the high expression group were significantly shorter than those in the low expression group (OS, P = .005 and EFS, P = .004). BMN673 combined with NL101 had a strong synergistic effect in treating AML. The combination significantly induced cell apoptosis and arrested cell cycle in G2/M phase. Mechanistically, BMN673 and NL101 combinatorial treatment promoted DNA damage. In vivo, the combination effectively delayed the development of AML and prolonged survival. INTERPRETATION: High PARP-1 expression predicts poor survival in CN-AML patients. The synergistic effects of PARP inhibitor BMN673 in combination with SAHA-bendamustine hybrid, NL101, provide a new therapeutic strategy against AML. FUND: National Natural Science Foundation of China and Zhejiang Provincial Key Innovation Team.


Assuntos
Biomarcadores Tumorais , Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Poli(ADP-Ribose) Polimerase-1/genética , Adulto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Cloridrato de Bendamustina/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
EBioMedicine ; 28: 90-96, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29402726

RESUMO

Ten-Eleven-Translocation 1 (TET1) plays a role in the DNA methylation process and gene activation. Recent reports suggest TET1 acts as an oncogene in leukemia development. However, the clinical relevance and biological insight of TET1 expression in cytogenetically normal acute myeloid leukemia (CN-AML) is unknown. In this study, quantification of TET1 transcript by real-time quantitative PCR in bone marrow blasts was performed in 360 CN-AML patients. As a result, high TET1 expression was more common in M0/M1 morphology and genes of NPM1 mutations, and underrepresented in CEBPA double allele mutations in our AML patients. In addition, we found overexpression of TET1 was associated with an inferior overall survival and event free survival in the two independent cohorts. Notably, mRNA and miRNA integrative analyses showed aberrant expression of several hub oncogenes appear to be regulated by some miRNAs like miR-127-5p, miR-494, miR-21 and miR-616 in high TET1 expressers. In conclusion, the TET1 gene expression might serve as a reliable predictor for patients survival in AML.


Assuntos
Análise Citogenética , Leucemia Mieloide Aguda/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Análise Multivariada , Nucleofosmina , Prognóstico , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Resultado do Tratamento
17.
J Cancer Res Clin Oncol ; 144(4): 697-706, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29392403

RESUMO

PURPOSE: We researched into the effect and mechanism of AC0010, a novel BTK inhibitor, in MCL, and compared its efficacy and safety with Ibrutinib to develop a preclinical study for the future therapy of MCL. METHODS: MTS assay was used to detect the growth inhibition caused by AC0010 and Ibrutinib, respectively, in MCL cell lines (Jeko-1 and JVM-2), primary MCL cells, and normal peripheral lymphocytes. Apoptosis of Jeko-1 and JVM-2 after exposure into AC0010 and Ibrutinib was conducted by flow cytometry; the expression of apoptosis-related proteins was checked by Western blot. q-PCR and Western blot were applied to examine the expression of BTK and p-BTK at mRNA and protein level as well as the BTK-ralated signaling pathways. MCL xenograft was developed to testify the efficacy and safety of AC0010 in vivo. RESULTS: In contrast with Ibrutinib, AC0010 proved to be more toxic to MCL cells in vitro (p < 0.01) with no augment in cytotoxicity to normal peripheral lymphocytes, and it can induce obvious apoptosis in MCL cell lines (p < 0.01) through caspase family and Bcl-2 family. AC0010 at 300 mg/kg can prolong the survival rate in MCL xenograft (p < 0.01). The phosphorylation of BTK is inhibited by AC0010 following simultaneously inhibition of BCR-BTK and PI3K/AKT signaling pathway in MCL cells. CONCLUSION: AC0010 is a novel BTK inhibitor of great efficacy and safety in MCL.


Assuntos
Linfoma de Célula do Manto/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Feminino , Humanos , Linfoma de Célula do Manto/enzimologia , Camundongos , Camundongos SCID , Piperidinas , Inibidores de Proteínas Quinases/efeitos adversos , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Cancer ; 142(8): 1664-1670, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193057

RESUMO

Approximately 50% of older patients with acute myeloid leukemia (AML) do not obtain chromosomal abnormalities as an effective risk-stratification, and present cytogenetically normal AML (CN-AML). To develop a reliable prediction model for stratifying the risk of these elderly patients, we conducted a study with a discovery and validation design. As a result, we found the top 6 mutated genes in the discovery cohort of 26 case by the whole exome sequencing, and verified as recurrent mutations in the large cohort of 329 patients by Sanger sequencing. The top 6 genes were NPM1, FLT3-ITD, DNMT3A, CEBPA double allele, IDH1 and IDH2 mutations, and the frequency of each gene in the combining cohort was 36.8%, 19.8%, 20.1%, 5.8%, 14.9% and 22.5%, respectively. In addition, clinical variables such as age, white blood cell counts, genes of IDH1 and DNMT3A mutations, European LeukemiaNet genotype (NPM1 mutations and lacking FLT3-ITD or CEBPA double allele mutations) and treatment protocols were independent factors for predicting the probabilities of overall and event-free survival. The prediction nomograms based on these significant factors showed accurate discrimination. In conclusion, we developed a reliable prediction model for stratifying the risk of elderly patients with CN-AML.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Regulação Leucêmica da Expressão Gênica/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Fatores de Risco , Sequenciamento do Exoma/métodos
19.
Sci Rep ; 7: 45960, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452374

RESUMO

Huntingtin interacting protein 1 (HIP1) is an endocytic protein which is overexpressed in a variety of human cancers and involved in cancer-causing translocation in leukemia. However, the prognostic impact of HIP1 expression on AML remains unclear. In this study, quantification of HIP1 transcript by real-time quantitative PCR in bone marrow blasts was performed in 270 AML patients. As a result, high HIP1 expression was seen more frequently in older patients, M4/M5 morphology and genes of NPM1 and DNMT3A mutations, and underrepresented in favorable karyotype subgroups and CEBPA double allele mutations in our AML patients. We also found high HIP1 expressers showed lower levels of hemoglobin. In addition, overexpression of HIP1 was associated with an inferior overall survival. The prognostic value of HIP1 expression was validated in patients from an independent TCGA cohort. Notably, up-regulation of miR-16, miR-15a, miR-28 and miR-660 were seen in high HIP1 expressers from the two independent cohorts. In vitro, interfereing of HIP1 expression by siRNA suppressed the proliferation of leukemic cells, and downregulation of these miRNAs were seen in THP-1 and Kasumi cell lines after silencing HIP1 expression. In conclusion, the HIP1 gene expression might serve as a reliable predictor for overall survival in AML patients.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Nucleofosmina , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Resultado do Tratamento
20.
Biomed Pharmacother ; 90: 699-704, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28419965

RESUMO

Chidamide, a novel histone deacetylase inhibitor (HDACi), has been approved for treatment of T-cell lymphomas in multiple clinical trials. It has been demonstrated that chidamide can inhibit cell cycle, promote apoptosis and induce differentiation in leukemia cells, whereas its effect on acute myeloid leukemia (AML) patients with FLT3-ITD mutation has not been clarified. In this study, we found that chidamide specifically induced G0/G1 arrest and apoptosis in FLT3-ITD positive AML cells in a concentration and time-dependent manner. We also found chidamide had the cytotoxicity effect on FLT3-ITD positive and negative AML cells. Moreover, with respect to relapsed/refractory patients, chidamide showed the same effectiveness as that in de novo AML patients. Notably, chidamide synergistically enhanced apoptosis caused by cytarabine. Our results support chidamide alone or combine with cytarabine may be used as an alternative therapeutic choice for AML patients especially those with FLT3-ITD mutation or relapsed/refractory ones.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fase G1/efeitos dos fármacos , Humanos , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/metabolismo , Mutação/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA