Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
2.
Cell Rep ; 42(9): 113114, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691147

RESUMO

The transcription factor DUX4 regulates a portion of the zygotic gene activation (ZGA) program in the early embryo. Many cancers express DUX4 but it is unknown whether this generates cells similar to early embryonic stem cells. Here we identified cancer cell lines that express DUX4 and showed that DUX4 is transiently expressed in a small subset of the cells. DUX4 expression activates the DUX4-regulated ZGA transcriptional program, the subsequent 8C-like program, and markers of early embryonic lineages, while suppressing steady-state and interferon-induced MHC class I expression. Although DUX4 was expressed in a small number of cells under standard culture conditions, DNA damage or changes in growth conditions increased the fraction of cells expressing DUX4 and its downstream programs. Our demonstration that transient expression of endogenous DUX4 in cancer cells induces a metastable early embryonic stem cell program and suppresses antigen presentation has implications for cancer growth, progression, and immune evasion.


Assuntos
Distrofia Muscular Facioescapuloumeral , Neoplasias , Humanos , Linhagem Celular , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
3.
Sci Rep ; 13(1): 7478, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156800

RESUMO

Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Masculino , Animais , Camundongos , Camundongos SCID , Receptores Proteína Tirosina Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Autoanticorpos , Debilidade Muscular , Acetilcolina
4.
J Neuroimmunol ; 373: 577978, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240543

RESUMO

Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.


Assuntos
Imunoglobulina G , Miastenia Gravis , Humanos , Autoanticorpos
5.
Sci Rep ; 12(1): 1426, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082321

RESUMO

With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Fator de Transcrição PAX7/genética , Transcriptoma , Biomarcadores/metabolismo , Biópsia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Fator de Transcrição PAX7/metabolismo , Índice de Gravidade de Doença , Células-Tronco/metabolismo , Células-Tronco/patologia
6.
Sci Rep ; 11(1): 23642, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880314

RESUMO

Structural Maintenance of Chromosomes Hinge Domain Containing 1 (SMCHD1) is a chromatin repressor, which is mutated in > 95% of Facioscapulohumeral dystrophy (FSHD) type 2 cases. In FSHD2, SMCHD1 mutations ultimately result in the presence of the cleavage stage transcription factor DUX4 in muscle cells due to a failure in epigenetic repression of the D4Z4 macrosatellite repeat on chromosome 4q, which contains the DUX4 locus. While binding of SMCHD1 to D4Z4 and its necessity to maintain a repressive D4Z4 chromatin structure in somatic cells are well documented, it is unclear how SMCHD1 is recruited to D4Z4, and how it exerts its repressive properties on chromatin. Here, we employ a quantitative proteomics approach to identify and characterize novel SMCHD1 interacting proteins, and assess their functionality in D4Z4 repression. We identify 28 robust SMCHD1 nuclear interactors, of which 12 are present in D4Z4 chromatin of myocytes. We demonstrate that loss of one of these SMCHD1 interacting proteins, RuvB-like 1 (RUVBL1), further derepresses DUX4 in FSHD myocytes. We also confirm the interaction of SMCHD1 with EZH inhibitory protein (EZHIP), a protein which prevents global H3K27me3 deposition by the Polycomb repressive complex PRC2, providing novel insights into the potential function of SMCHD1 in the repression of DUX4 in the early stages of embryogenesis. The SMCHD1 interactome outlined herein can thus provide further direction into research on the potential function of SMCHD1 at genomic loci where SMCHD1 is known to act, such as D4Z4 repeats, the inactive X chromosome, autosomal gene clusters, imprinted loci and telomeres.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Proteômica/métodos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Ligação Proteica
7.
Sci Rep ; 11(1): 24446, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961766

RESUMO

Current prostate cancer risk classifications rely on clinicopathological parameters resulting in uncertainties for prognostication. To improve individual risk stratification, we examined the predictive value of selected proteins with respect to tumor heterogeneity and genomic instability. We assessed the degree of genomic instability in 50 radical prostatectomy specimens by DNA-Image-Cytometry and evaluated protein expression in related 199 tissue-microarray (TMA) cores. Immunohistochemical data of SATB1, SPIN1, TPM4, VIME and TBB5 were correlated with the degree of genomic instability, established clinical risk factors and overall survival. Genomic instability was associated with a GS ≥ 7 (p = 0.001) and worse overall survival (p = 0.008). A positive SATB1 expression was associated with a GS ≤ 6 (p = 0.040), genomic stability (p = 0.027), and was a predictor for increased overall survival (p = 0.023). High expression of SPIN1 was also associated with longer overall survival (p = 0.048) and lower preoperative PSA-values (p = 0.047). The combination of SATB1 expression, genomic instability, and GS lead to a novel Prostate Cancer Prediction Score (PCP-Score) which outperforms the current D'Amico et al. stratification for predicting overall survival. Low SATB1 expression, genomic instability and GS ≥ 7 were identified as markers for poor prognosis. Their combination overcomes current clinical risk stratification regimes.


Assuntos
Instabilidade Genômica , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neoplasias da Próstata/genética , Idoso , Expressão Gênica , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/análise , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Análise de Sobrevida
8.
Nat Genet ; 53(8): 1207-1220, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267371

RESUMO

In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/fisiologia , Distrofia Muscular Facioescapuloumeral/patologia , Proteína Supressora de Tumor p53/genética , Animais , Diferenciação Celular/genética , Reprogramação Celular , Dano ao DNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Distrofia Muscular Facioescapuloumeral/genética , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Zigoto/citologia
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753489

RESUMO

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.


Assuntos
Autoanticorpos/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Autoanticorpos/administração & dosagem , Autoanticorpos/genética , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Masculino , Camundongos , Miastenia Gravis/patologia , Mioblastos , Junção Neuromuscular/imunologia , Junção Neuromuscular/patologia , Fosforilação/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
10.
Neurology ; 94(23): e2441-e2447, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467133

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded DUX4 gene in skeletal muscle. In this study, we tested the hypothesis whether LRIF1, a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2. METHODS: Clinical examination of a patient with idiopathic FSHD2 was combined with pathologic muscle biopsy examination and with genetic, epigenetic, and molecular studies. RESULTS: A homozygous LRIF1 mutation was identified in a patient with a clinical phenotype consistent with FSHD. This mutation resulted in the absence of the long isoform of LRIF1 protein, D4Z4 chromatin relaxation, and DUX4 and DUX4 target gene expression in myonuclei, all molecular and epigenetic hallmarks of FSHD. In concordance, LRIF1 was shown to bind to the D4Z4 repeat, and knockdown of the LRIF1 long isoform in muscle cells results in DUX4 and DUX4 target gene expression. CONCLUSION: LRIF1 is a bona fide disease gene for FSHD2. This study further reinforces the unifying genetic mechanism, which postulates that FSHD is caused by D4Z4 chromatin relaxation, resulting in inappropriate DUX4 expression in skeletal muscle.


Assuntos
Proteínas de Ciclo Celular/genética , Distrofia Muscular Facioescapuloumeral/genética , Biópsia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 4/genética , Códon sem Sentido , Consanguinidade , Fibroblastos , Mutação da Fase de Leitura , Duplicação Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Linhagem , Isoformas de Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
11.
Hum Mol Genet ; 29(6): 1030-1043, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32083293

RESUMO

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , RNA-Seq/métodos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
12.
Gene Ther ; 27(5): 209-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31900423

RESUMO

Enhancing the intracellular delivery and performance of RNA-guided CRISPR-Cas9 nucleases (RGNs) remains in demand. Here, we show that nuclear translocation of commonly used Streptococcus pyogenes Cas9 (SpCas9) proteins is suboptimal. Hence, we generated eCas9.4NLS by endowing the high-specificity eSpCas9(1.1) nuclease (eCas9.2NLS) with additional nuclear localization signals (NLSs). We demonstrate that eCas9.4NLS coupled to prototypic or optimized guide RNAs achieves efficient targeted DNA cleavage and probe the performance of SpCas9 proteins with different NLS compositions at target sequences embedded in heterochromatin versus euchromatin. Moreover, after adenoviral vector (AdV)-mediated transfer of SpCas9 expression units, unbiased quantitative immunofluorescence microscopy revealed 2.3-fold higher eCas9.4NLS nuclear enrichment levels than those observed for high-specificity eCas9.2NLS. This improved nuclear translocation yielded in turn robust gene editing after nonhomologous end joining repair of targeted double-stranded DNA breaks. In particular, AdV delivery of eCas9.4NLS into muscle progenitor cells resulted in significantly higher editing frequencies at defective DMD alleles causing Duchenne muscular dystrophy (DMD) than those achieved by AdVs encoding the parental, eCas9.2NLS, protein. In conclusion, this work provides a strong rationale for integrating viral vector and optimized gene-editing technologies to bring about enhanced RGN delivery and performance.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Vetores Genéticos/genética , RNA Guia de Cinetoplastídeos/genética
13.
Hum Mol Genet ; 28(23): 3997-4011, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630170

RESUMO

The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.


Assuntos
DNA Satélite/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular , DNA Satélite/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Íntrons , Modelos Biológicos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
14.
J Med Genet ; 56(10): 693-700, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31243061

RESUMO

BACKGROUND: Variants in the Structural Maintenance of Chromosomes flexible Hinge Domain-containing protein 1 (SMCHD1) can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) and the unrelated Bosma arhinia microphthalmia syndrome (BAMS). In FSHD2, pathogenic variants are found anywhere in SMCHD1 while in BAMS, pathogenic variants are restricted to the extended ATPase domain. Irrespective of the phenotypic outcome, both FSHD2-associated and BAMS-associated SMCHD1 variants result in quantifiable local DNA hypomethylation. We compared FSHD2, BAMS and non-pathogenic SMCHD1 variants to derive genotype-phenotype relationships. METHODS: Examination of SMCHD1 variants and methylation of the SMCHD1-sensitive FSHD locus DUX4 in 187 FSHD2 families, 41 patients with BAMS and in control individuals. Analysis of variants in a three-dimensional model of the ATPase domain of SMCHD1. RESULTS: DUX4 methylation analysis is essential to establish pathogenicity of SMCHD1 variants. Although the FSHD2 mutation spectrum includes all types of variants covering the entire SMCHD1 locus, missense variants are significantly enriched in the extended ATPase domain. Identification of recurrent variants suggests disease-specific residues for FSHD2 and in BAMS, consistent with a largely disease-specific localisation of variants in SMCHD1. CONCLUSIONS: The localisation of missense variants within the ATPase domain of SMCHD1 may contribute to the differences in phenotypic outcome.


Assuntos
Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Microftalmia/genética , Distrofia Muscular Facioescapuloumeral/genética , Nariz/anormalidades , Adenosina Trifosfatases/genética , Metilação de DNA , Feminino , Variação Genética , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Domínios Proteicos
15.
Neurol Neuroimmunol Neuroinflamm ; 6(3): e547, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30882021

RESUMO

Objective: To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods: We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results: The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions: Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Adulto , Anticorpos Monoclonais/isolamento & purificação , Autoanticorpos/isolamento & purificação , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Proteínas Recombinantes
16.
Hum Mol Genet ; 28(3): 476-486, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312408

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Adulto , Idoso , Biópsia , Feminino , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Fatores de Transcrição/genética
17.
Neurology ; 91(6): e562-e570, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29980640

RESUMO

OBJECTIVE: To determine whether congenital arhinia/Bosma arhinia microphthalmia syndrome (BAMS) and facioscapulohumeral muscular dystrophy type 2 (FSHD2), 2 seemingly unrelated disorders both caused by heterozygous pathogenic missense variants in the SMCHD1 gene, might represent different ends of a broad single phenotypic spectrum associated with SMCHD1 dysfunction. METHODS: We examined and/or interviewed 14 patients with FSHD2 and 4 unaffected family members with N-terminal SMCHD1 pathogenic missense variants to identify BAMS subphenotypes. RESULTS: None of the patients with FSHD2 or family members demonstrated any congenital defects or dysmorphic features commonly found in patients with BAMS. One patient became anosmic after nasal surgery and one patient was hyposmic; one man was infertile (unknown cause) but reported normal pubertal development. CONCLUSION: These data suggest that arhinia/BAMS and FSHD2 do not represent one phenotypic spectrum and that SMCHD1 pathogenic variants by themselves are insufficient to cause either of the 2 disorders. More likely, both arhinia/BAMS and FSHD2 are caused by complex oligogenic or multifactorial mechanisms that only partially overlap at the level of SMCHD1.


Assuntos
Atresia das Cóanas/diagnóstico , Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Microftalmia/diagnóstico , Microftalmia/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Mutação de Sentido Incorreto/genética , Nariz/anormalidades , Adolescente , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
18.
Front Aging Neurosci ; 10: 102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706885

RESUMO

Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) caused by a point mutation resulting in an amino acid change (NP_000475.1:p.Glu693Gln) in the amyloid precursor protein (APP). Post-mortem frontal and occipital cortical brain tissue from nine patients and nine age-related controls was used for RNA sequencing to identify biological pathways affected in HCHWA-D. Although previous studies indicated that pathology is more severe in the occipital lobe in HCHWA-D compared to the frontal lobe, the current study showed similar changes in gene expression in frontal and occipital cortex and the two brain regions were pooled for further analysis. Significantly altered pathways were analyzed using gene set enrichment analysis (GSEA) on 2036 significantly differentially expressed genes. Main pathways over-represented by down-regulated genes were related to cellular aerobic respiration (including ATP synthesis and carbon metabolism) indicating a mitochondrial dysfunction. Principal up-regulated pathways were extracellular matrix (ECM)-receptor interaction and ECM proteoglycans in relation with an increase in the transforming growth factor beta (TGFß) signaling pathway. Comparison with the publicly available dataset from pre-symptomatic APP-E693Q transgenic mice identified overlap for the ECM-receptor interaction pathway, indicating that ECM modification is an early disease specific pathomechanism.

19.
Ann N Y Acad Sci ; 1413(1): 92-103, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29377160

RESUMO

Immunoglobulin 4 (IgG4) is one of four human IgG subclasses and has several unique functional characteristics. It exhibits low affinity for complement and for most Fc receptors. It furthermore has generally high affinity for its antigen, with binding occurring in a monovalent fashion, as IgG4 can exchange Fab-arms with other IgG4 molecules. Because of these characteristics, IgG4 is believed to block its targets and prevent inflammation, which, depending on the setting, can have a protective or pathogenic effect. One example of IgG4 pathogenicity is muscle-specific kinase (MuSK) myasthenia gravis (MG), in which patients develop IgG4 MuSK autoantibodies, resulting in muscle weakness. As a consequence of the distinct IgG4 characteristics, the pathomechanism of MuSK MG is very different from IgG1-and IgG3-mediated autoimmune diseases, such as acetylcholine receptor MG. In recent years, new autoantibodies in a spectrum of autoimmune diseases have been discovered. Interestingly, some were found to be predominantly IgG4. These IgG4-mediated autoimmune diseases share many pathomechanistic aspects with MuSK MG, suggesting that IgG4-mediated autoimmunity forms a separate niche among the antibody-mediated disorders. In this review, we summarize the group of IgG4-mediated autoimmune diseases, discuss the role of IgG4 in MuSK MG, and highlight interesting future research questions for IgG4-mediated autoimmunity.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Autoimunidade/imunologia , Humanos , Imunoglobulina G/classificação , Debilidade Muscular/patologia , Junção Neuromuscular/metabolismo
20.
Ann N Y Acad Sci ; 1413(1): 111-118, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356029

RESUMO

Myasthenia gravis (MG) with antibodies to muscle-specific kinase (MuSK) is characterized by fluctuating fatigable weakness. In MuSK MG, involvement of bulbar muscles, neck, and shoulder and respiratory weakness are more prominent than in acetylcholine receptor (AChR) MG. MuSK autoantibodies are mainly of the IgG4 subclass, and as such are unable to activate complement, have low affinity for Fc receptors, and are functionally monovalent. Therefore, the pathogenicity of IgG4 MuSK autoantibodies was initially questioned. A broad collection of in vitro active immunization and passive transfer models has been developed that have shed light on the pathogenicity of MuSK autoantibodies. Passive transfer studies with purified IgG4 from MuSK MG patients confirmed that IgG4 is sufficient to reproduce clear clinical, electrophysiological, and histological signs of myasthenia. In vitro experiments revealed that MuSK IgG4 autoantibodies preferably bind the first Ig-like domain of MuSK, correlate with disease severity, and interfere with the association between MuSK and low-density lipoprotein receptor-related protein 4 and collagen Q. Some patients have additional IgG1 MuSK autoantibodies, but their role in the disease is unclear. Altogether, this provides a rationale for epitope-specific or IgG4-specific treatment strategies for MuSK MG and emphasizes the importance of the development of different experimental models.


Assuntos
Autoanticorpos/imunologia , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miastenia Gravis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA