Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(5): 324, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173333

RESUMO

Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.


Assuntos
Cardiolipinas , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Cardiolipinas/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo
2.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048117

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a very poor prognosis as it has a 2.5 to 5 years mean survival after proper diagnosis. Even nintedanib and pirfenidone cannot halt the progression, though they slow the progression of IPF. Hence, there is a need to understand the novel pathophysiology. Phospholipase A2 (PLA2) could be the ideal candidate to study in IPF, as they have a role in both inflammation and fibrosis. In the present study, we have shown the expression profile of various secretory Phospholipase A2 (PLA2) isoforms by analyzing publicly available transcriptome data of single cells from the lungs of healthy individuals and IPF patients. Among 11 members of sPLA2, PLA2G2A is found to be increased in the fibroblasts and mesothelial cells while PLA2G5 is found to be increased in the fibroblasts of IPF patients. We identified a subset of fibroblasts expressing high PLA2G2A with moderate expression of PLA2G5 and which are specific to IPF only; we named it as PLA2G2A+ IPF fibroblast. Pathway analysis revealed that these PLA2G2A+ IPF fibroblast have upregulation of both inflammatory and fibrosis-related pathways like the TGF-ß signaling pathway, IL-17 signaling, the arachidonic acid metabolism pathway and ECM-receptor interaction. In addition to this, we found elevated levels of sPLA2-IIA in plasma samples of IPF patients in our cohort. PLA2G3, PLA2G10 and PLA2G12B are found in to be increased in certain epithelial cells of IPF patients. Thus, these findings indicate that these five isoforms have a disease-dominant role along with innate immune roles as these isoforms are found predominantly in structural cells of IPF patients. Further, we have targeted sPLA2 in mice model of bleomycin-induced lung fibrosis by pBPB, a known sPLA2 inhibitor. pBPB treatment attenuated lung fibrosis induced by bleomycin along with a reduction in TGF-ß and deposition of extracellular matrix in lung. Thus, these findings indicate that these sPLA2 isoforms especially PLA2G2A may serve as a therapeutic target in lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Fosfolipases A2 Secretórias , Animais , Camundongos , Bleomicina , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fosfolipases A2 Secretórias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos
3.
Clin Exp Allergy ; 53(3): 276-294, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181726

RESUMO

Epidemiological studies have shown a rise in the prevalence of allergic diseases in India during the last two decades. However, recent evidence from the Global Asthma Network study has observed a decrease in allergic rhinitis, asthma and atopic dermatitis in children. Still, with a population over 1.3 billion, there is a huge burden of allergic rhinitis, asthma and atopic dermatitis, and this is compounded by an unmet demand for trained allergy specialists and poor health service framework. There is wide variation in the prevalence of allergic diseases between different geographical locations in India, and the reasons are unclear at present. This may at least in part be attributable to considerable heterogeneity in aero-biology, weather, air pollution levels, cultural and religious factors, diet, socioeconomic strata and literacy. At present, factors enhancing risks and those protecting from development of atopy and allergic diseases have not been well delineated, although there is some evidence for the influence of genetic factors alongside cultural and environmental variables such as diet, exposure to tobacco smoke and air pollution and residence in urban areas. This narrative review provides an overview of data from India regarding epidemiology, risk factors and genetics and highlights gaps in evidence as well as areas for future research.


Assuntos
Asma , Dermatite Atópica , Rinite Alérgica Perene , Rinite Alérgica , Criança , Humanos , Dermatite Atópica/epidemiologia , Prevalência , Rinite Alérgica Perene/epidemiologia , Asma/epidemiologia , Fatores de Risco
4.
Front Pharmacol ; 13: 1011216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569308

RESUMO

Chronic obstructive pulmonary disease (COPD) along with asthma is a major and increasing global health problem. Smoking contributes to about 80%-90% of total COPD cases in the world. COPD leads to the narrowing of small airways and destruction of lung tissue leading to emphysema primarily caused by neutrophil elastase. Neutrophil elastase plays an important role in disease progression in COPD patients and has emerged as an important target for drug discovery. Sonneratia apetala Buch.-Ham. is a mangrove plant belonging to family Sonneratiaceae. It is widely found in the Sundarban regions of India. While the fruits of this plant have antibacterial, antifungal, antioxidant and astringent activities, fruit and leaf extracts have been shown to reduce the symptoms of asthma and cough. The aim of this study is to find whether hydro alcoholic fruit extracts of S. apetala inhibit neutrophil elastase and thus prevent the progression of neutrophil elastase-driven lung emphysema. The hydroalcoholic extract, ethanol: water (90:10), of the S. apetala Buch.-Ham. fresh fruits (SAM) were used for neutrophil elastase enzyme kinetic assay and IC50 of the extract was determined. The novel HPLC method has been developed and the extract was standardized with gallic acid and ellagic acid as standards. The extract was further subjected to LC-MS2 profiling to identify key phytochemicals. The standardized SAM extract contains 53 µg/mg of gallic acid and 95 µg/mg of ellagic acid, based on the HPLC calibration curve. SAM also reversed the elastase-induced morphological change of human epithelial cells and prevented the release of ICAM-1 in vitro and an MTT assay was conducted to assess the viability. Further, 10 mg/kg SAM had reduced alveolar collapse induced by neutrophil elastase in the mice model. Thus, in this study, we reported for the first time that S. apetala fruit extract has the potential to inhibit human neutrophil elastase in vitro and in vivo.

5.
Eur J Pharmacol ; 931: 175187, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952844

RESUMO

Neutrophil elastase, a powerful physiological defence tool, may serve as drug target for diverse diseases due to its bystander effect on host cells like chronic obstructive pulmonary disease (COPD). Here, we synthesised seven novel benzoxazinone derivatives and identified that these synthetic compounds are human neutrophil elastase inhibitor that was demonstrated by enzyme substrate kinetic assay. One such compound, PD05, emerged as the most potent inhibitor with lower IC50 as compared to control drug sivelestat. While this inhibition is competitive based on substrate dilution assay, PD05 showed a high binding affinity for human neutrophil elastase (Kd = 1.63 nM) with faster association and dissociation rate compared to notable elastase inhibitors like ONO 6818 and AZD9668, and its interaction with human neutrophil elastase was fully reversible.Preclinical pharmacokinetic studies were performed in vitro where protein binding was found to be 72% with a high recovery rate, aqueous solubility of 194.7 µM, low permeability along with a favourable hERG. Experiments with cell line revealed that the molecule successfully prevented elastase induced rounding and retracted cell morphology and cell cytotoxicity. In mouse model PD05 is able to reduce the alveolar collapse induced by neutrophil elastase. In summary, we demonstrate the in situ, in vitro and in vivo anti-elastase potential of the newly synthesised benzoxazinone derivative PD05 and thus this could be promising candidate for further investigation as a drug for the treatment of COPD.


Assuntos
Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Humanos , Elastase de Leucócito/farmacologia , Camundongos , Neutrófilos , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
6.
Mitochondrion ; 57: 76-87, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359362

RESUMO

The airway epithelium is continuously exposed to a variety of pollutants and allergens, thanks to both natural and manmade environmental pollution. With numerous protective mechanisms, the airway epithelium protects the lungs. DNA repair mechanism is one such protective response and its failure could lead to the accumulation of DNA mutations. Our lab had earlier demonstrated the dysfunctional mitochondria in airway epithelium of the asthmatic mice lungs. Here, we show that Ku70 modulation by the administration of Ku70 plasmid attenuates asthma features and reduces mitochondrial dysfunction in the lungs of allergen exposed mice. Ku70 is a key DNA repair protein with diverse roles including VDJ recombination, telomere maintenance, and maintenance of cell homeostasis. Recently, we found a reduction in Ku70 expression in asthmatic airway epithelium, and this was associated with mitochondrial dysfunction in asthmatic condition. In this study, we have shown that Ku70 over-expression in asthmatic mice attenuated airway hyperresponsiveness, airway inflammation, sub-epithelial fibrosis along with reduction in TGF-ß with no effect in IL-13 levels and goblet cell metaplasia. Ku70 over-expression in asthmatic mice reduced 8-isoprostane, a marker of oxidative stress, and restored the mitochondrial function in asthmatic mice. We further found these roles of Ku70 to be independent of DNA damage as Ku70 overexpressed mice did not show any reduction in DNA tail, an index of DNA damage. Thus, our findings indicate that Ku70 can attenuate crucial features of asthma along with the restoration of mitochondrial function. This implies that Ku70 could be a therapeutic target for asthma without affecting DNA repair function.


Assuntos
Asma/terapia , Vetores Genéticos/administração & dosagem , Autoantígeno Ku/genética , Mitocôndrias/metabolismo , Ovalbumina/efeitos adversos , Animais , Asma/induzido quimicamente , Asma/genética , Asma/fisiopatologia , Lavagem Broncoalveolar , Modelos Animais de Doenças , Injeções Intravenosas , Pulmão/metabolismo , Masculino , Camundongos , Plasmídeos/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L728-L741, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877223

RESUMO

Airway epithelial homeostasis is under constant threat due to continuous exposure to the external environment, and abnormally robust sensitivity to external stimuli is critical to the development of airway diseases, including asthma. Ku is a key nonhomologous end-joining DNA repair protein with diverse cellular functions such as VDJ recombination and telomere length maintenance. Here, we show a novel function of Ku in alleviating features of allergic airway inflammation via the regulation of mitochondrial and endoplasmic reticulum (ER) stress. We first determined that airway epithelial cells derived from both asthmatic lungs and murine asthma models demonstrate increased expression of 8-hydroxy-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Ku protein expression was dramatically reduced in the bronchial epithelium of patients with asthma as well as in human bronchial epithelial cells exposed to oxidative stress. Knockdown of Ku70 or Ku80 in naïve mice elicited mitochondrial collapse or ER stress, leading to bronchial epithelial cell apoptosis and spontaneous development of asthma-like features, including airway hyperresponsiveness, airway inflammation, and subepithelial fibrosis. These findings demonstrate an essential noncanonical role for Ku proteins in asthma pathogenesis, likely via maintenance of organelle homeostasis. This novel function of Ku proteins may also be important in other disease processes associated with organelle stress.


Assuntos
Células Epiteliais/metabolismo , Homeostase/fisiologia , Inflamação/prevenção & controle , Autoantígeno Ku/metabolismo , Animais , Asma/patologia , Asma/prevenção & controle , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Estresse Oxidativo/fisiologia , Hipersensibilidade Respiratória/patologia
8.
Am J Respir Cell Mol Biol ; 60(4): 399-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30335467

RESUMO

The asthma candidate gene inositol polyphosphate 4-phosphatase type I A (INPP4A) is a lipid phosphatase that negatively regulates the PI3K/Akt pathway. Destabilizing genetic variants of INPP4A increase the risk of asthma, and lung-specific INPP4A knockdown induces asthma-like features. INPP4A is known to localize intracellularly, and its extracellular presence has not been reported yet. Here we show for the first time that INPP4A is secreted by airway epithelial cells and that extracellular INPP4A critically inhibits airway inflammation and remodeling. INPP4A was present in blood and BAL fluid, and this extracellular INPP4A was reduced in patients with asthma and mice with allergic airway inflammation. In both naive mice and mice with allergic airway inflammation, antibody-mediated neutralization of extracellular INPP4A potentiated PI3K/Akt signaling and induced airway hyperresponsiveness, with prominent airway remodeling, subepithelial fibroblast proliferation, and collagen deposition. The link between extracellular INPP4A and fibroblasts was investigated in vitro. Cultured airway epithelial cells secreted enzymatically active INPP4A in extracellular vesicles and in a free form. Extracellular vesicle-mediated transfer of labeled INPP4A, from epithelial cells to fibroblasts, was observed. Inhibition of such transfer by anti-INPP4A antibody increased fibroblast proliferation. We propose that secretory INPP4A is a novel "paracrine" layer of the intricate regulation of lung homeostasis, by which airway epithelium dampens PI3K/Akt signaling in inflammatory cells or local fibroblasts, thereby limiting inflammation and remodeling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Hipersensibilidade Respiratória/patologia , Remodelação das Vias Aéreas/genética , Animais , Asma/sangue , Asma/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Monoéster Fosfórico Hidrolases/sangue , Monoéster Fosfórico Hidrolases/genética , Hipersensibilidade Respiratória/genética , Transdução de Sinais/genética
9.
Sci Rep ; 7(1): 9565, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851976

RESUMO

Studies have highlighted the role of nutritional and metabolic modulators in asthma pathobiology. Steroid resistance is an important clinical problem in asthma but lacks good experimental models. Linoleic acid, a polyunsaturated fatty acid, has been linked to asthma and glucocorticoid sensitivity. Its 12/15-lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (HODE) induces mitochondrial dysfunction, with severe airway obstruction and neutrophilic airway inflammation. Here we show that HODE administration leads to steroid unresponsiveness in an otherwise steroid responsive model of allergic airway inflammation (AAI). HODE treatment to allergic mice further increased airway hyperresponsiveness and goblet metaplasia. Treatment with dexamethasone was associated with increased neutrophilic inflammation in HODE treated allergic mice; unlike control allergic mice that showed resolution of inflammation. HODE induced loss of steroid sensitivity was associated with increased p-NFkB in mice and reduced GR-α transcript levels in cultured human bronchial epithelia. In summary, HODE modifies typical AAI to recapitulate many of the phenotypic features seen in severe steroid unresponsive asthma. We speculate that since HODE is a natural metabolite, it may be relevant to the increased asthma severity and steroid insensitivity in patients who are obese or consume high fat diets. Further characterization of HODE induced steroid insensitivity may clarify the mechanisms.


Assuntos
Antiasmáticos/farmacologia , Asma/metabolismo , Resistência a Medicamentos , Ácido Linoleico/metabolismo , NF-kappa B/metabolismo , Esteroides/farmacologia , Animais , Asma/tratamento farmacológico , Asma/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Metabolismo dos Lipídeos , Camundongos , Receptores de Glucocorticoides/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
10.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L103-13, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26566906

RESUMO

Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases.


Assuntos
Asma/metabolismo , Respiração Celular/fisiologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Asma/tratamento farmacológico , Asma/patologia , Humanos , Pulmão/patologia , Mitocôndrias/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Respiração/efeitos dos fármacos , Respiração/imunologia
11.
Int Arch Allergy Immunol ; 167(2): 110-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303861

RESUMO

BACKGROUND: Our previous study showed that parabromophenacyl bromide (PBPB) inhibits the features of allergic airway inflammation and airway hyperresponsiveness (AHR). However, its effect on airway remodeling, e.g. subepithelial fibrosis in a chronic allergic asthma model, was not investigated. We examined this issue in this study. METHODS: PBPB was administered to mice with an induced chronic asthmatic condition. AHR was estimated at the end of the experiment, followed by euthanasia. Lung sections were stained with hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome to determine airway inflammation, goblet cell metaplasia and subepithelial fibrosis, respectively. Transforming growth factor-ß1 (TGF-ß1) was estimated in lung homogenates. To determine the effect of PBPB on smooth-muscle hyperplasia, immunohistochemistry against α-smooth-muscle actin was performed on the lung sections. RESULTS: Chronic ovalbumin challenges in a mouse model of allergic asthma caused significant subepithelial fibrosis and elevated TGF-ß1, along with significant AHR. PBPB attenuated subepithelial fibrosis with a reduction of lung TGF-ß1, airway inflammation and AHR without affecting goblet cell metaplasia. It also attenuated smooth-muscle hyperplasia with a reduction in the expression of α-smooth-muscle actin in the lungs. CONCLUSION: Our findings indicate that PBPB attenuates some crucial features of airway remodeling such as subepithelial fibrosis and smooth-muscle hyperplasia. These data suggest that PBPB could therefore be a therapeutic drug for chronic asthma.


Assuntos
Acetofenonas/farmacologia , Asma/tratamento farmacológico , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Actinas/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Asma/patologia , Asma/fisiopatologia , Modelos Animais de Doenças , Fibrose , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Fosfolipase A2/farmacologia , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
12.
Int Immunopharmacol ; 26(1): 246-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25863236

RESUMO

This is a follow-up study of our previous work in which we screened a series of Vasicine analogues for their anti-inflammatory activity in a preventive OVA induced murine model of asthma. The study demonstrated that R8, one of the analogues, significantly suppressed the Th2 cytokine production and eosinophil recruitment to the airways. In the present study, we have been using two standard experimental murine models of asthma, where the mice were treated with R8 either during (preventive use) or after (therapeutic use) the development of asthma features. In the preventive model, R8 reduced inflammatory cell infiltration to the airways, OVA specific IgE and Th2 cytokine production. Also, the R8 treatment in the therapeutic model decreased methacholine induced AHR, Th2 cytokine release, serum IgE levels, infiltration of inflammatory cells into the airways, phosphorylation of STAT6 and expression of GATA3. Moreover, R8 not only reduced goblet cell metaplasia in asthmatic mice but also reduced IL-4 induced Muc5AC gene expression in human alveolar basal epithelial cells. Further, R8 attenuated IL-4 induced differentiation of murine splenocytes into Th2 cells in vitro. So, we may deduce that R8 treatment profoundly reduced asthma features by attenuating the differentiation of T cells into Th2 cells by interfering with the binding of IL-4 to its receptor in turn decreasing the phosphorylation of STAT6 and expression of GATA3 in murine model of asthma. These preclinical findings suggest a possible therapeutic role of R8 in allergic asthma.


Assuntos
Alcaloides/química , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Azepinas/uso terapêutico , Quinazolinas/química , Quinazolinonas/uso terapêutico , Fator de Transcrição STAT6/antagonistas & inibidores , Animais , Antiasmáticos/administração & dosagem , Antiasmáticos/química , Antiasmáticos/toxicidade , Asma/imunologia , Asma/metabolismo , Azepinas/administração & dosagem , Azepinas/química , Azepinas/toxicidade , Citocinas/análise , Citocinas/genética , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Imunoglobulina E/sangue , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Quinazolinonas/administração & dosagem , Quinazolinonas/química , Quinazolinonas/toxicidade , Testes de Toxicidade
13.
EMBO J ; 33(9): 994-1010, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24431222

RESUMO

There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho-GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiro(Hi)) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiro(Lo)) leads to loss of efficacy. Treatment with MSCmiro(Hi) was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiro(Hi) in three separate allergen-induced asthma models. In a human in vitro system, MSCmiro(Hi) reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro-inflammatory supernatant of IL-13-induced macrophages. Anti-inflammatory MSC products like NO, TGF-ß, IL-10 and PGE2, were unchanged by Miro1 overexpression, excluding non-specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair.


Assuntos
Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Transporte Biológico/genética , Células Cultivadas , Terapia Genética/métodos , Humanos , Pulmão/patologia , Lesão Pulmonar/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mitocôndrias/transplante , Células NIH 3T3 , Nanotubos , Resultado do Tratamento , Proteínas rho de Ligação ao GTP/genética
14.
ISRN Allergy ; 2013: 261297, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24106613

RESUMO

Studying ultrastructural changes could reveal novel pathophysiology of obese-asthmatic condition as existing concepts in asthma pathogenesis are based on the histological changes of the diseased airway. While asthma is defined in functional terms, the potential of electron microscopy (EM) in providing cellular and subcellular detail is underutilized. With this view, we have performed transmission EM in the lungs from allergic mice that show key features of asthma and high-fat- or high-fructose-fed mice that mimicked metabolic syndrome to illustrate the ultrastructural changes. The primary focus was epithelial injury and metaplasia, which are cardinal features of asthma and initiate airway remodeling. EM findings of the allergically inflamed mouse lungs correlate with known features of human asthma such as increased mitochondria in airway smooth muscle, platelet activation and subepithelial myofibroblasts. Interestingly, we found a clear and unambiguous evidence to suggest that ciliated cells can become goblet cells using immunoelectron microscopy. Additionally, we show for the first time the stressed mitochondria in the bronchial epithelia of high-fat- or high-fructose-fed mice even without allergen exposure. These results may stimulate interest in using EM in understanding novel pathological mechanisms for different subtypes of asthma including obese asthma.

15.
PLoS One ; 8(4): e62916, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23646158

RESUMO

BACKGROUND: Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. METHODOLOGY/PRINCIPAL FINDINGS: In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-ß1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function.


Assuntos
Alérgenos/imunologia , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Flavanonas/farmacologia , Interleucina-13/imunologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/imunologia , Alérgenos/efeitos adversos , Animais , Antiasmáticos/administração & dosagem , Apoptose/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Asma/induzido quimicamente , Caspase 12/metabolismo , Caspase 3/metabolismo , Citosol/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ativação Enzimática/efeitos dos fármacos , Eosinofilia/tratamento farmacológico , Eosinofilia/imunologia , Flavanonas/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-13/efeitos adversos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia
16.
Int Immunopharmacol ; 15(3): 597-605, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23453702

RESUMO

Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features.


Assuntos
Asma/imunologia , Mucosa Respiratória/imunologia , Canais de Cátion TRPV/metabolismo , Animais , Asma/genética , Hiper-Reatividade Brônquica/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células Caliciformes/patologia , Humanos , Interleucina-13/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Canais de Cátion TRPV/genética
17.
Sci Rep ; 3: 1540, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23528921

RESUMO

The mechanisms underlying asthmatic airway epithelial injury are not clear. 12/15-lipoxygenase (an ortholog of human 15-LOX-1), which is induced by IL-13, is associated with mitochondrial degradation in reticulocytes at physiological conditions. In this study, we showed that 12/15-LOX expressed in nonepithelial cells caused epithelial injury in asthma pathogenesis. While 12/15-LOX overexpression or IL-13 administration to naïve mice showed airway epithelial injury, 12/15-LOX knockout/knockdown in allergic mice reduced airway epithelial injury. The constitutive expression of 15-LOX-1 in bronchial epithelia of normal human lungs further indicated that epithelial 15-LOX-1 may not cause epithelial injury. 12/15-LOX expression is increased in various inflammatory cells in allergic mice. Though non-epithelial cells such as macrophages or fibroblasts released 12/15-LOX metabolites upon IL-13 induction, bronchial epithelia didn't release. Further 12-S-HETE, arachidonic acid metabolite of 12/15-LOX leads to epithelial injury. These findings suggested 12/15-LOX expressed in non-epithelial cells such as macrophages and fibroblasts leads to bronchial epithelial injury.


Assuntos
Araquidonato 12-Lipoxigenase/imunologia , Araquidonato 15-Lipoxigenase/imunologia , Asma/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/sangue , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/imunologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Células 3T3 , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Asma/genética , Asma/metabolismo , Western Blotting , Linhagem Celular , Citocromos c/imunologia , Citocromos c/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/imunologia , Epitélio/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-13/administração & dosagem , Interleucina-13/imunologia , Interleucina-13/farmacologia , Lactonas , Ácidos Linoleicos/sangue , Ácidos Linoleicos/imunologia , Ácidos Linoleicos/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/ultraestrutura , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Sesquiterpenos de Eudesmano
18.
Int Immunopharmacol ; 15(1): 150-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23137769

RESUMO

Airway epithelial injury is the hallmark of various respiratory diseases and therapeutic targeting of epithelial injury could be an effective strategy for controlling these diseases. We recently reported that a novel cinnamate, ethyl 3',4',5'-trimethoxythionocinnamate (ETMTC) derived from Piper longum derivative, was most potent among various cinnamate derivatives in inhibiting inflammatory cell adhesion molecules (CAMs). In this study, we investigated the effects of ETMTC on the features of allergic asthma and epithelial injury in a murine model. ETMTC treatment to ovalbumin sensitized and challenged mice during ovalbumin challenge reduced airway hyperresponsiveness, and airway inflammation. This attenuation of asthma features was associated with the reduction in the expressions of various CAMs, NF-κB activation, Th2 cytokines, eotaxin and 8-isoprostane that were estimated in lung homogenates. Further, it increased activities of mitochondrial complexes I and IV in lung mitochondria and reduced cytochrome c and caspase 9 activities in lung cytosol. In addition, it reduced the levels of oxidative DNA damage marker in bronchoalveolar lavage fluid and DNA fragmentation of bronchial epithelia in lung sections. Further, ETMTC not only increased the levels of 15-(S)-hydroxyeicosatetraenoic acid, suppressor of airway remodeling, but also inhibited goblet cell metaplasia and sub-epithelial fibrosis. These results demonstrate that ETMTC reduces epithelial injury and mitochondrial dysfunction associated with allergic asthma and thus ETMTC could be useful to develop efficient therapeutic molecule against asthma.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Cinamatos/uso terapêutico , Alérgenos , Animais , Antiasmáticos/farmacologia , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Brônquios/patologia , Brônquios/fisiopatologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Cinamatos/farmacologia , Citocinas/sangue , Dano ao DNA/efeitos dos fármacos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Ovalbumina , Mucosa Respiratória/lesões , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologia
19.
Int Immunopharmacol ; 14(4): 438-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986054

RESUMO

Asthma is a chronic airway inflammatory disorder which is characterized by reversible airway obstruction, airway hyperresponsiveness and airway inflammation. Oxidative stress has been shown to be strongly associated with most of the features of asthma and leads to accumulation of phosphatidyl inositol (3,4) bis-phosphate {PtdIns(3,4)P2} which is the major substrate for inositol polyphosphate 4 phosphatase (INPP4A). PtdIns(3,4)P2 in turn activates PI3K pathway and contributes to oxidative stress. Thus, there exists a vicious loop between oxidative stress and lipid phosphatase signaling. In this context, we have recently shown that INPP4A, a crucial molecular checkpoint in controlling PI3K-Akt signaling pathway, is downregulated in allergic airway inflammation. Resveratrol, a potent antioxidant found in red wines, has been shown to attenuate asthma features in murine model of allergic airway inflammation (AAI), however the underlying mode of its action was not completely understood. In this study, the effect of resveratrol on mitochondrial dysfunction, PI3K-Akt signaling and inositol polyphosphate 4 phosphatase was studied in murine model of allergic airway inflammation. We observed that resveratrol treatment of allergic mice was found to significantly downregulate oxidative stress and restore mitochondrial function. It also decreased calpain activity and restored the expression of INPP4A in lungs which in turn reduced Akt kinase activity and Akt phosphorylation. These results suggest a novel mechanism of action of resveratrol in attenuating asthma phenotype by downregulating PI3K-Akt pathway via upregulating INPP4A.


Assuntos
Asma/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Estilbenos/uso terapêutico , Animais , Antiasmáticos , Asma/induzido quimicamente , Calpaína , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol
20.
Nat Commun ; 3: 877, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22673904

RESUMO

Inositol polyphosphate phosphatases regulate the magnitude of phosphoinositide-3 kinase signalling output. Although inositol polyphosphate-4-phosphatase is known to regulate phosphoinositide-3 kinase signalling, little is known regarding its role in asthma pathogenesis. Here we show that modulation of inositol polyphosphate-4-phosphatase alters the severity of asthma. Allergic airway inflammation in mice led to calpain-mediated degradation of inositol polyphosphate-4-phosphatase. In allergic airway inflammation models, preventing inositol polyphosphate-4-phosphatase degradation by inhibiting calpain activity, or overexpression of inositol polyphosphate-4-phosphatase in mouse lungs, led to attenuation of the asthma phenotype. Conversely, knockdown of inositol polyphosphate-4-phosphatase severely aggravated the allergic airway inflammation and the asthma phenotype. Interestingly, inositol polyphosphate-4-phosphatase knockdown in lungs of naive mice led to spontaneous airway hyper-responsiveness, suggesting that inositol polyphosphate-4-phosphatase could be vital in maintaining the lung homeostasis. We suggest that inositol polyphosphate-4-phosphatase has an important role in modulating inflammatory response in asthma, and thus, uncover a new understanding of the complex interplay between inositol signalling and asthma, which could provide alternative strategies in asthma management.


Assuntos
Asma/enzimologia , Asma/patologia , Hipersensibilidade/enzimologia , Hipersensibilidade/imunologia , Inflamação/enzimologia , Inflamação/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Asma/genética , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Hipersensibilidade/genética , Inflamação/genética , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monoéster Fosfórico Hidrolases/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA