RESUMO
Sucrose nonfermenting AMPK-related kinase (SNARK) is a member of the AMPK family of kinases and has been implicated in the regulation of critical metabolic processes. Recent findings demonstrate that SNARK has an important role in the maintenance of muscle mass with age. Loss of skeletal muscle mass (cachexia) is a key problem for cancer patients. Thus, based on our previous findings with aging, we hypothesized that SNARK would play a role in regulating muscle mass under conditions of cancer cachexia. To test this hypothesis, Lewis Lung Carcinoma tumor cells or vehicle were injected subcutaneously in the right flank of wild type mice, muscle-specific transgenic mice expressing inactive SNARK mutant (SDN) or muscle-specific transgenic mice overexpressing wild-type SNARK (SWT). All tumor-bearing mice presented muscle wasting compared to vehicle-injected mice. However, SDN tumor-bearing mice had more pronounced atrophy compared to wild-type and SWT tumor-bearing mice. Histological analysis confirmed muscle atrophy in tumor-bearing mice, and SDN tumor-bearing mice exhibited a significantly smaller skeletal muscle cross-sectional area than wild-type and SWT tumor-bearing mice. Moreover, SDN tumor-bearing mice had increased skeletal muscle BAX protein expression, a marker of apoptosis, compared to other groups.Thus, lack of SNARK in skeletal muscle aggravates cancer-induced skeletal muscle wasting. These findings uncover a role for SNARK in the maintenance of skeletal muscle mass under cachexia conditions.
Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Sacarose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/fisiologia , Caquexia/metabolismo , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/etiologiaRESUMO
The mechanisms by which estradiol modulates adipose lipolysis are poorly understood. We sought to measure basal and ß3-stimulated indices of lipoysis (FFAs, glycerol) in vivo in E2 deficient or supplemented rats, and ex vivo with direct acute E2 exposure. For 2 weeks, ovariectomized (OVX) and OVX rats treated with a daily oral dose of E2 (OVX E2) were pairfed to SHAM controls (n = 12 per group). Adipocyte size was modestly (â¼40%) increased in OVX rats, but did not reach significance (p = 0.2). After 2 weeks, half of the animals in each group received an in vivo injection of saline or 1 mg/kg of the ß3 agonist CL 316, 243. Serum FFA concentrations, but not glycerol, were lower in OVX and OVX E2 rats compared with SHAM controls (p = 0.02). A significant CL response was present in all groups (p<0.001) and HSL activation was unaffected by OVX or OVX E2 in retroperitoneal (r.p.) or inguinal (iWAT) adipose depots in vivo. Ex vivo, CL increased FFA and glycerol accumulation in the media as well as HSL phosphorylation by several fold in r.p. and iWAT explants, but responses from OVX and OVX E2 rats were comparable to SHAMs. To assess whether E2 can directly affect lipolysis, r.p. and iWAT tissue was treated with E2, CL or E2 + CL for 2, 4 or 8 hours using adipose tissue organ culture. CL stimulated FFA release (p<0.001), but was unaffected by E2. Overall, our results indicate that E2 does not directly regulate adipose tissue lipolysis.
Assuntos
Estradiol/metabolismo , Lipólise/fisiologia , Tecido Adiposo , Adiposidade/fisiologia , Animais , Peso Corporal , Dioxóis , Estradiol/fisiologia , Ácidos Graxos não Esterificados , Feminino , Lipólise/genética , Obesidade , Tamanho do Órgão , Ovariectomia , Ratos , ÚteroRESUMO
The irreversible loss of estrogen (specifically 17-ß-estradiol; E2) compromises whole-body glucose tolerance in women. Hormone replacement therapy (HRT) is frequently prescribed to treat estrogen deficiency, but has several deleterious side effects. Exercise has been proposed as an HRT substitute, however, their relative abilities to treat glucose intolerance are unknown. Thirty ovariectomized (OVX) and 20 SHAM (control) rats underwent glucose tolerance tests (GTT) 10 weeks post surgery. Area under the curve (AUC) for OVX rats was 60% greater than SHAM controls (P = 0.0005). Rats were then randomly assigned to the following treatment groups: SHAM sedentary (sed) or exercise (ex; 60 min, 5×/weeks), OVX sed, ex, or E2 (28 µg/kg bw/day) for 4 weeks. OVX ex rats experienced a ~45% improvement in AUC relative to OVX sed rats, whereas OVX E2 underwent a partial reduction (17%; P = 0.08). Maximal insulin-stimulated glucose uptake in soleus and EDL was not impaired in OVX rats, or augmented with exercise or E2. Akt phosphorylation did not differ in soleus, EDL, or liver of any group. However, OVX ex and OVX E2 experienced greater increases in p-Akt Ser473 in VAT and SQ tissues compared with SHAM and OVX sed groups. Mitochondrial markers CS, COXIV, and core1 were increased in soleus posttraining in OVX ex rats. The content of COXIV was reduced by 52% and 61% in SQ of OVX sed and E2 rats, compared to SHAM controls, but fully restored in OVX ex rats. In summary, exercise restores glucose tolerance in OVX rats more effectively than E2. This is not reflected by alterations in muscle maximal insulin response, but increased insulin signaling in adipose depots may underlie whole-body improvements.
RESUMO
IL-6 is an exercise-regulated myokine that has been suggested to increase lipolysis in fast-twitch skeletal muscle. However, it is not known if a similar effect is present in slow-twitch muscle. Furthermore, epinephrine increases IL-6 secretion from skeletal muscle, suggesting that IL-6 could play a role in mediating the lipolytic effects of catecholamines. The purpose of this study was to determine whether IL-6 stimulates skeletal muscle lipolysis in a fiber type dependent manner and is required for epinephrine-stimulated lipolysis in murine skeletal muscle. Soleus and extensor digitorum longus (EDL) muscles from male C57BL/6J wild-type and IL-6(-/-) mice were incubated with 1 µM (183 ng/ml) epinephrine or 75 ng/ml recombinant IL-6 (rIL-6) for 60 min. IL-6 treatment increased 5'-AMP-activated protein kinase and signal transducer and activator of transcription 3 phosphorylation and glycerol release in isolated EDL but not soleus muscles from C57BL/6J mice. Conversely, epinephrine increased glycerol release in soleus but not EDL muscles from C57BL/6J mice. Basal lipolysis was elevated in soleus muscle from IL-6(-/-) mice, and this was associated with increases in adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58). The increase in ATGL content does not appear to be due to a loss of IL-6's direct effects, because ex vivo treatment with IL-6 failed to alter the expression of ATGL mRNA in soleus muscle. In summary, IL-6 stimulates lipolysis in glycolytic but not oxidative muscle, whereas the opposite fiber type effect is seen with epinephrine. The absence of IL-6 indirectly upregulates lipolysis, and this is associated with increases in ATGL and its coactivator CGI-58.